Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

xx-1=x
x aldagaia eta 0 ezin dira izan berdinak, zerorekin zatitzea ez dagoelako definituta. Biderkatu ekuazioaren bi aldeak honekin: x.
x^{2}-1=x
x^{2} lortzeko, biderkatu x eta x.
x^{2}-1-x=0
Kendu x bi aldeetatik.
x^{2}-x-1=0
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 1 balioa a balioarekin, -1 balioa b balioarekin, eta -1 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
Egin -4 bider -1.
x=\frac{-\left(-1\right)±\sqrt{5}}{2}
Gehitu 1 eta 4.
x=\frac{1±\sqrt{5}}{2}
-1 zenbakiaren aurkakoa 1 da.
x=\frac{\sqrt{5}+1}{2}
Orain, ebatzi x=\frac{1±\sqrt{5}}{2} ekuazioa ± plus denean. Gehitu 1 eta \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
Orain, ebatzi x=\frac{1±\sqrt{5}}{2} ekuazioa ± minus denean. Egin \sqrt{5} ken 1.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Ebatzi da ekuazioa.
xx-1=x
x aldagaia eta 0 ezin dira izan berdinak, zerorekin zatitzea ez dagoelako definituta. Biderkatu ekuazioaren bi aldeak honekin: x.
x^{2}-1=x
x^{2} lortzeko, biderkatu x eta x.
x^{2}-1-x=0
Kendu x bi aldeetatik.
x^{2}-x=1
Gehitu 1 bi aldeetan. Edozein zenbaki gehi zero zenbaki hori bera da.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Zatitu -1 (x gaiaren koefizientea) 2 balioarekin, eta -\frac{1}{2} lortuko duzu. Ondoren, gehitu -\frac{1}{2} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Egin -\frac{1}{2} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
Gehitu 1 eta \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
Atera x^{2}-x+\frac{1}{4} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Atera ekuazioaren bi aldeen erro karratua.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Sinplifikatu.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Gehitu \frac{1}{2} ekuazioaren bi aldeetan.