Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=-12 ab=1\times 36=36
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx+36 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab positiboa denez, a eta b balioek zeinu bera dute. a+b negatiboa denez, a eta b negatiboak dira. Zerrendatu 36 biderkadura duten osokoen pare guztiak.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Kalkulatu pare bakoitzaren batura.
a=-6 b=-6
-12 batura duen parea da soluzioa.
\left(x^{2}-6x\right)+\left(-6x+36\right)
Berridatzi x^{2}-12x+36 honela: \left(x^{2}-6x\right)+\left(-6x+36\right).
x\left(x-6\right)-6\left(x-6\right)
Deskonposatu x lehen taldean, eta -6 bigarren taldean.
\left(x-6\right)\left(x-6\right)
Deskonposatu x-6 gai arrunta banaketa-propietatea erabiliz.
\left(x-6\right)^{2}
Berridatzi karratu binomial gisa.
factor(x^{2}-12x+36)
Trinomio karratu baten forma du trinomio honek, eta biderkagai komun batekin biderkatu da beharbada. Trinomio karratuak faktorizatzeko, gai nagusien eta hondarreko gaien erro karratuak aurkitu behar dira.
\sqrt{36}=6
Aurkitu hondarreko gaiaren (36) erro karratua.
\left(x-6\right)^{2}
Gai nagusien eta hondarreko gaien erro karratuen batura edo kendura den binomioaren karratua da trinomio karratua, eta trinomio karratuaren erdiko gaiaren ikurrak zehazten du haren ikurra.
x^{2}-12x+36=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 36}}{2}
Egin -12 ber bi.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2}
Egin -4 bider 36.
x=\frac{-\left(-12\right)±\sqrt{0}}{2}
Gehitu 144 eta -144.
x=\frac{-\left(-12\right)±0}{2}
Atera 0 balioaren erro karratua.
x=\frac{12±0}{2}
-12 zenbakiaren aurkakoa 12 da.
x^{2}-12x+36=\left(x-6\right)\left(x-6\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 6 x_{1} faktorean, eta 6 x_{2} faktorean.