Ebatzi: x (complex solution)
x=\sqrt{13}-3\approx 0.605551275
x=-\left(\sqrt{13}+3\right)\approx -6.605551275
Ebatzi: x
x=\sqrt{13}-3\approx 0.605551275
x=-\sqrt{13}-3\approx -6.605551275
Grafikoa
Partekatu
Kopiatu portapapeletan
x^{2}+6x-2=2
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x^{2}+6x-2-2=2-2
Egin ken 2 ekuazioaren bi aldeetan.
x^{2}+6x-2-2=0
2 balioari bere burua kenduz gero, 0 da emaitza.
x^{2}+6x-4=0
Egin 2 ken -2.
x=\frac{-6±\sqrt{6^{2}-4\left(-4\right)}}{2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 1 balioa a balioarekin, 6 balioa b balioarekin, eta -4 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-6±\sqrt{36-4\left(-4\right)}}{2}
Egin 6 ber bi.
x=\frac{-6±\sqrt{36+16}}{2}
Egin -4 bider -4.
x=\frac{-6±\sqrt{52}}{2}
Gehitu 36 eta 16.
x=\frac{-6±2\sqrt{13}}{2}
Atera 52 balioaren erro karratua.
x=\frac{2\sqrt{13}-6}{2}
Orain, ebatzi x=\frac{-6±2\sqrt{13}}{2} ekuazioa ± plus denean. Gehitu -6 eta 2\sqrt{13}.
x=\sqrt{13}-3
Zatitu -6+2\sqrt{13} balioa 2 balioarekin.
x=\frac{-2\sqrt{13}-6}{2}
Orain, ebatzi x=\frac{-6±2\sqrt{13}}{2} ekuazioa ± minus denean. Egin 2\sqrt{13} ken -6.
x=-\sqrt{13}-3
Zatitu -6-2\sqrt{13} balioa 2 balioarekin.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Ebatzi da ekuazioa.
x^{2}+6x-2=2
Honelako ekuazio koadratikoak karratua osatuta ebazten dira. Hori egiteko, ekuazioak x^{2}+bx=c egitura izan behar du.
x^{2}+6x-2-\left(-2\right)=2-\left(-2\right)
Gehitu 2 ekuazioaren bi aldeetan.
x^{2}+6x=2-\left(-2\right)
-2 balioari bere burua kenduz gero, 0 da emaitza.
x^{2}+6x=4
Egin -2 ken 2.
x^{2}+6x+3^{2}=4+3^{2}
Zatitu 6 (x gaiaren koefizientea) 2 balioarekin, eta 3 lortuko duzu. Ondoren, gehitu 3 balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}+6x+9=4+9
Egin 3 ber bi.
x^{2}+6x+9=13
Gehitu 4 eta 9.
\left(x+3\right)^{2}=13
Atera x^{2}+6x+9 balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x+3\right)^{2}}=\sqrt{13}
Atera ekuazioaren bi aldeen erro karratua.
x+3=\sqrt{13} x+3=-\sqrt{13}
Sinplifikatu.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Egin ken 3 ekuazioaren bi aldeetan.
x^{2}+6x-2=2
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x^{2}+6x-2-2=2-2
Egin ken 2 ekuazioaren bi aldeetan.
x^{2}+6x-2-2=0
2 balioari bere burua kenduz gero, 0 da emaitza.
x^{2}+6x-4=0
Egin 2 ken -2.
x=\frac{-6±\sqrt{6^{2}-4\left(-4\right)}}{2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 1 balioa a balioarekin, 6 balioa b balioarekin, eta -4 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-6±\sqrt{36-4\left(-4\right)}}{2}
Egin 6 ber bi.
x=\frac{-6±\sqrt{36+16}}{2}
Egin -4 bider -4.
x=\frac{-6±\sqrt{52}}{2}
Gehitu 36 eta 16.
x=\frac{-6±2\sqrt{13}}{2}
Atera 52 balioaren erro karratua.
x=\frac{2\sqrt{13}-6}{2}
Orain, ebatzi x=\frac{-6±2\sqrt{13}}{2} ekuazioa ± plus denean. Gehitu -6 eta 2\sqrt{13}.
x=\sqrt{13}-3
Zatitu -6+2\sqrt{13} balioa 2 balioarekin.
x=\frac{-2\sqrt{13}-6}{2}
Orain, ebatzi x=\frac{-6±2\sqrt{13}}{2} ekuazioa ± minus denean. Egin 2\sqrt{13} ken -6.
x=-\sqrt{13}-3
Zatitu -6-2\sqrt{13} balioa 2 balioarekin.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Ebatzi da ekuazioa.
x^{2}+6x-2=2
Honelako ekuazio koadratikoak karratua osatuta ebazten dira. Hori egiteko, ekuazioak x^{2}+bx=c egitura izan behar du.
x^{2}+6x-2-\left(-2\right)=2-\left(-2\right)
Gehitu 2 ekuazioaren bi aldeetan.
x^{2}+6x=2-\left(-2\right)
-2 balioari bere burua kenduz gero, 0 da emaitza.
x^{2}+6x=4
Egin -2 ken 2.
x^{2}+6x+3^{2}=4+3^{2}
Zatitu 6 (x gaiaren koefizientea) 2 balioarekin, eta 3 lortuko duzu. Ondoren, gehitu 3 balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}+6x+9=4+9
Egin 3 ber bi.
x^{2}+6x+9=13
Gehitu 4 eta 9.
\left(x+3\right)^{2}=13
Atera x^{2}+6x+9 balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x+3\right)^{2}}=\sqrt{13}
Atera ekuazioaren bi aldeen erro karratua.
x+3=\sqrt{13} x+3=-\sqrt{13}
Sinplifikatu.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Egin ken 3 ekuazioaren bi aldeetan.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}