Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=6 ab=1\times 5=5
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx+5 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
a=1 b=5
ab positiboa denez, a eta b balioek zeinu bera dute. a+b positiboa denez, a eta b positiboak dira. Halako pare bakarra sistemaren soluzioa da.
\left(x^{2}+x\right)+\left(5x+5\right)
Berridatzi x^{2}+6x+5 honela: \left(x^{2}+x\right)+\left(5x+5\right).
x\left(x+1\right)+5\left(x+1\right)
Deskonposatu x lehen taldean, eta 5 bigarren taldean.
\left(x+1\right)\left(x+5\right)
Deskonposatu x+1 gai arrunta banaketa-propietatea erabiliz.
x^{2}+6x+5=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-6±\sqrt{6^{2}-4\times 5}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-6±\sqrt{36-4\times 5}}{2}
Egin 6 ber bi.
x=\frac{-6±\sqrt{36-20}}{2}
Egin -4 bider 5.
x=\frac{-6±\sqrt{16}}{2}
Gehitu 36 eta -20.
x=\frac{-6±4}{2}
Atera 16 balioaren erro karratua.
x=-\frac{2}{2}
Orain, ebatzi x=\frac{-6±4}{2} ekuazioa ± plus denean. Gehitu -6 eta 4.
x=-1
Zatitu -2 balioa 2 balioarekin.
x=-\frac{10}{2}
Orain, ebatzi x=\frac{-6±4}{2} ekuazioa ± minus denean. Egin 4 ken -6.
x=-5
Zatitu -10 balioa 2 balioarekin.
x^{2}+6x+5=\left(x-\left(-1\right)\right)\left(x-\left(-5\right)\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu -1 x_{1} faktorean, eta -5 x_{2} faktorean.
x^{2}+6x+5=\left(x+1\right)\left(x+5\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.