Ebatzi: y (complex solution)
\left\{\begin{matrix}\\y=x^{2}+\frac{x}{3}\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Ebatzi: y
\left\{\begin{matrix}\\y=x^{2}+\frac{x}{3}\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Ebatzi: x (complex solution)
x=\frac{-\sqrt{36y+1}-1}{6}
x=0
x=\frac{\sqrt{36y+1}-1}{6}
Ebatzi: x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{\sqrt{36y+1}-1}{6}\text{; }x=\frac{-\sqrt{36y+1}-1}{6}\text{, }&y\geq -\frac{1}{36}\end{matrix}\right.
Grafikoa
Partekatu
Kopiatu portapapeletan
x^{2}+3x^{3}-3xy=0
Erabili banaketa-propietatea 3x eta x^{2}-y biderkatzeko.
3x^{3}-3xy=-x^{2}
Kendu x^{2} bi aldeetatik. Zero ken edozein zenbaki zenbaki horren negatiboa da.
-3xy=-x^{2}-3x^{3}
Kendu 3x^{3} bi aldeetatik.
\left(-3x\right)y=-3x^{3}-x^{2}
Modu arruntean dago ekuazioa.
\frac{\left(-3x\right)y}{-3x}=-\frac{\left(3x+1\right)x^{2}}{-3x}
Zatitu ekuazioaren bi aldeak -3x balioarekin.
y=-\frac{\left(3x+1\right)x^{2}}{-3x}
-3x balioarekin zatituz gero, -3x balioarekiko biderketa desegiten da.
y=x^{2}+\frac{x}{3}
Zatitu -\left(1+3x\right)x^{2} balioa -3x balioarekin.
x^{2}+3x^{3}-3xy=0
Erabili banaketa-propietatea 3x eta x^{2}-y biderkatzeko.
3x^{3}-3xy=-x^{2}
Kendu x^{2} bi aldeetatik. Zero ken edozein zenbaki zenbaki horren negatiboa da.
-3xy=-x^{2}-3x^{3}
Kendu 3x^{3} bi aldeetatik.
\left(-3x\right)y=-3x^{3}-x^{2}
Modu arruntean dago ekuazioa.
\frac{\left(-3x\right)y}{-3x}=-\frac{\left(3x+1\right)x^{2}}{-3x}
Zatitu ekuazioaren bi aldeak -3x balioarekin.
y=-\frac{\left(3x+1\right)x^{2}}{-3x}
-3x balioarekin zatituz gero, -3x balioarekiko biderketa desegiten da.
y=x^{2}+\frac{x}{3}
Zatitu -\left(1+3x\right)x^{2} balioa -3x balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}