Faktorizatu
\left(x+2\right)\left(x+8\right)
Ebaluatu
\left(x+2\right)\left(x+8\right)
Grafikoa
Partekatu
Kopiatu portapapeletan
a+b=10 ab=1\times 16=16
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx+16 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
1,16 2,8 4,4
ab positiboa denez, a eta b balioek zeinu bera dute. a+b positiboa denez, a eta b positiboak dira. Zerrendatu 16 biderkadura duten osokoen pare guztiak.
1+16=17 2+8=10 4+4=8
Kalkulatu pare bakoitzaren batura.
a=2 b=8
10 batura duen parea da soluzioa.
\left(x^{2}+2x\right)+\left(8x+16\right)
Berridatzi x^{2}+10x+16 honela: \left(x^{2}+2x\right)+\left(8x+16\right).
x\left(x+2\right)+8\left(x+2\right)
Deskonposatu x lehen taldean, eta 8 bigarren taldean.
\left(x+2\right)\left(x+8\right)
Deskonposatu x+2 gai arrunta banaketa-propietatea erabiliz.
x^{2}+10x+16=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-10±\sqrt{10^{2}-4\times 16}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-10±\sqrt{100-4\times 16}}{2}
Egin 10 ber bi.
x=\frac{-10±\sqrt{100-64}}{2}
Egin -4 bider 16.
x=\frac{-10±\sqrt{36}}{2}
Gehitu 100 eta -64.
x=\frac{-10±6}{2}
Atera 36 balioaren erro karratua.
x=-\frac{4}{2}
Orain, ebatzi x=\frac{-10±6}{2} ekuazioa ± plus denean. Gehitu -10 eta 6.
x=-2
Zatitu -4 balioa 2 balioarekin.
x=-\frac{16}{2}
Orain, ebatzi x=\frac{-10±6}{2} ekuazioa ± minus denean. Egin 6 ken -10.
x=-8
Zatitu -16 balioa 2 balioarekin.
x^{2}+10x+16=\left(x-\left(-2\right)\right)\left(x-\left(-8\right)\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu -2 x_{1} faktorean, eta -8 x_{2} faktorean.
x^{2}+10x+16=\left(x+2\right)\left(x+8\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}