Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=2 ab=1\times 1=1
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx+1 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
a=1 b=1
ab positiboa denez, a eta b balioek zeinu bera dute. a+b positiboa denez, a eta b positiboak dira. Halako pare bakarra sistemaren soluzioa da.
\left(x^{2}+x\right)+\left(x+1\right)
Berridatzi x^{2}+2x+1 honela: \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
Deskonposatu x x^{2}+x taldean.
\left(x+1\right)\left(x+1\right)
Deskonposatu x+1 gai arrunta banaketa-propietatea erabiliz.
\left(x+1\right)^{2}
Berridatzi karratu binomial gisa.
factor(x^{2}+2x+1)
Trinomio karratu baten forma du trinomio honek, eta biderkagai komun batekin biderkatu da beharbada. Trinomio karratuak faktorizatzeko, gai nagusien eta hondarreko gaien erro karratuak aurkitu behar dira.
\left(x+1\right)^{2}
Gai nagusien eta hondarreko gaien erro karratuen batura edo kendura den binomioaren karratua da trinomio karratua, eta trinomio karratuaren erdiko gaiaren ikurrak zehazten du haren ikurra.
x^{2}+2x+1=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-2±\sqrt{4-4}}{2}
Egin 2 ber bi.
x=\frac{-2±\sqrt{0}}{2}
Gehitu 4 eta -4.
x=\frac{-2±0}{2}
Atera 0 balioaren erro karratua.
x^{2}+2x+1=\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu -1 x_{1} faktorean, eta -1 x_{2} faktorean.
x^{2}+2x+1=\left(x+1\right)\left(x+1\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.