s ( x + y ) d y = d x
Ebatzi: d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&\left(x=0\text{ and }s=0\right)\text{ or }\left(y=\frac{\sqrt{sx\left(sx+4\right)}-sx}{2s}\text{ and }s\neq 0\right)\text{ or }\left(y=-\frac{\sqrt{sx\left(sx+4\right)}+sx}{2s}\text{ and }s\neq 0\right)\end{matrix}\right.
Ebatzi: s (complex solution)
\left\{\begin{matrix}s=\frac{x}{y\left(x+y\right)}\text{, }&y\neq 0\text{ and }x\neq -y\\s\in \mathrm{C}\text{, }&d=0\text{ or }\left(x=0\text{ and }y=0\right)\end{matrix}\right.
Ebatzi: d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(y=-\frac{\sqrt{sx\left(sx+4\right)}+sx}{2s}\text{ and }s\geq -\frac{4}{x}\text{ and }s>0\right)\text{ or }\left(y=-\frac{\sqrt{sx\left(sx+4\right)}+sx}{2s}\text{ and }s\leq -\frac{4}{x}\text{ and }s<0\right)\text{ or }\left(y=\frac{\sqrt{sx\left(sx+4\right)}-sx}{2s}\text{ and }s\geq -\frac{4}{x}\text{ and }s>0\right)\text{ or }\left(y=\frac{\sqrt{sx\left(sx+4\right)}-sx}{2s}\text{ and }s\leq -\frac{4}{x}\text{ and }s<0\right)\text{ or }\left(x=0\text{ and }s=0\right)\text{ or }\left(y\neq 0\text{ and }x=-2y\text{ and }s=\frac{2}{y}\right)\text{ or }\left(s\neq 0\text{ and }y=0\text{ and }x=0\right)\end{matrix}\right.
Ebatzi: s
\left\{\begin{matrix}s=\frac{x}{y\left(x+y\right)}\text{, }&y\neq 0\text{ and }x\neq -y\\s\in \mathrm{R}\text{, }&d=0\text{ or }\left(x=0\text{ and }y=0\right)\end{matrix}\right.
Grafikoa
Partekatu
Kopiatu portapapeletan
\left(sx+sy\right)dy=dx
Erabili banaketa-propietatea s eta x+y biderkatzeko.
\left(sxd+syd\right)y=dx
Erabili banaketa-propietatea sx+sy eta d biderkatzeko.
sxdy+sdy^{2}=dx
Erabili banaketa-propietatea sxd+syd eta y biderkatzeko.
sxdy+sdy^{2}-dx=0
Kendu dx bi aldeetatik.
\left(sxy+sy^{2}-x\right)d=0
Konbinatu d duten gai guztiak.
\left(sxy-x+sy^{2}\right)d=0
Modu arruntean dago ekuazioa.
d=0
Zatitu 0 balioa sxy+sy^{2}-x balioarekin.
\left(sx+sy\right)dy=dx
Erabili banaketa-propietatea s eta x+y biderkatzeko.
\left(sxd+syd\right)y=dx
Erabili banaketa-propietatea sx+sy eta d biderkatzeko.
sxdy+sdy^{2}=dx
Erabili banaketa-propietatea sxd+syd eta y biderkatzeko.
\left(xdy+dy^{2}\right)s=dx
Konbinatu s duten gai guztiak.
\left(dxy+dy^{2}\right)s=dx
Modu arruntean dago ekuazioa.
\frac{\left(dxy+dy^{2}\right)s}{dxy+dy^{2}}=\frac{dx}{dxy+dy^{2}}
Zatitu ekuazioaren bi aldeak xdy+dy^{2} balioarekin.
s=\frac{dx}{dxy+dy^{2}}
xdy+dy^{2} balioarekin zatituz gero, xdy+dy^{2} balioarekiko biderketa desegiten da.
s=\frac{x}{y\left(x+y\right)}
Zatitu dx balioa xdy+dy^{2} balioarekin.
\left(sx+sy\right)dy=dx
Erabili banaketa-propietatea s eta x+y biderkatzeko.
\left(sxd+syd\right)y=dx
Erabili banaketa-propietatea sx+sy eta d biderkatzeko.
sxdy+sdy^{2}=dx
Erabili banaketa-propietatea sxd+syd eta y biderkatzeko.
sxdy+sdy^{2}-dx=0
Kendu dx bi aldeetatik.
\left(sxy+sy^{2}-x\right)d=0
Konbinatu d duten gai guztiak.
\left(sxy-x+sy^{2}\right)d=0
Modu arruntean dago ekuazioa.
d=0
Zatitu 0 balioa sxy+sy^{2}-x balioarekin.
\left(sx+sy\right)dy=dx
Erabili banaketa-propietatea s eta x+y biderkatzeko.
\left(sxd+syd\right)y=dx
Erabili banaketa-propietatea sx+sy eta d biderkatzeko.
sxdy+sdy^{2}=dx
Erabili banaketa-propietatea sxd+syd eta y biderkatzeko.
\left(xdy+dy^{2}\right)s=dx
Konbinatu s duten gai guztiak.
\left(dxy+dy^{2}\right)s=dx
Modu arruntean dago ekuazioa.
\frac{\left(dxy+dy^{2}\right)s}{dxy+dy^{2}}=\frac{dx}{dxy+dy^{2}}
Zatitu ekuazioaren bi aldeak xdy+dy^{2} balioarekin.
s=\frac{dx}{dxy+dy^{2}}
xdy+dy^{2} balioarekin zatituz gero, xdy+dy^{2} balioarekiko biderketa desegiten da.
s=\frac{x}{y\left(x+y\right)}
Zatitu dx balioa xdy+dy^{2} balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}