Faktorizatu
q\left(1-6q\right)\left(3q+1\right)
Ebaluatu
q\left(1-6q\right)\left(3q+1\right)
Partekatu
Kopiatu portapapeletan
q\left(1-3q-18q^{2}\right)
Deskonposatu q.
-18q^{2}-3q+1
Kasurako: 1-3q-18q^{2}. Berrantolatu polinomioa, ohiko eran jartzeko. Ordenatu gaiak berretura handienetik txikienera.
a+b=-3 ab=-18=-18
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena -18q^{2}+aq+bq+1 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
1,-18 2,-9 3,-6
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b negatiboa denez, zenbaki negatiboak positiboak baino balio absolutu handiagoa du. Zerrendatu -18 biderkadura duten osokoen pare guztiak.
1-18=-17 2-9=-7 3-6=-3
Kalkulatu pare bakoitzaren batura.
a=3 b=-6
-3 batura duen parea da soluzioa.
\left(-18q^{2}+3q\right)+\left(-6q+1\right)
Berridatzi -18q^{2}-3q+1 honela: \left(-18q^{2}+3q\right)+\left(-6q+1\right).
3q\left(-6q+1\right)-6q+1
Deskonposatu 3q -18q^{2}+3q taldean.
\left(-6q+1\right)\left(3q+1\right)
Deskonposatu -6q+1 gai arrunta banaketa-propietatea erabiliz.
q\left(-6q+1\right)\left(3q+1\right)
Berridatzi faktorizatutako adierazpen osoa.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}