Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=-9 ab=1\left(-36\right)=-36
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena m^{2}+am+bm-36 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
1,-36 2,-18 3,-12 4,-9 6,-6
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b negatiboa denez, zenbaki negatiboak positiboak baino balio absolutu handiagoa du. Zerrendatu -36 biderkadura duten osokoen pare guztiak.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Kalkulatu pare bakoitzaren batura.
a=-12 b=3
-9 batura duen parea da soluzioa.
\left(m^{2}-12m\right)+\left(3m-36\right)
Berridatzi m^{2}-9m-36 honela: \left(m^{2}-12m\right)+\left(3m-36\right).
m\left(m-12\right)+3\left(m-12\right)
Deskonposatu m lehen taldean, eta 3 bigarren taldean.
\left(m-12\right)\left(m+3\right)
Deskonposatu m-12 gai arrunta banaketa-propietatea erabiliz.
m^{2}-9m-36=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
m=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-36\right)}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
m=\frac{-\left(-9\right)±\sqrt{81-4\left(-36\right)}}{2}
Egin -9 ber bi.
m=\frac{-\left(-9\right)±\sqrt{81+144}}{2}
Egin -4 bider -36.
m=\frac{-\left(-9\right)±\sqrt{225}}{2}
Gehitu 81 eta 144.
m=\frac{-\left(-9\right)±15}{2}
Atera 225 balioaren erro karratua.
m=\frac{9±15}{2}
-9 zenbakiaren aurkakoa 9 da.
m=\frac{24}{2}
Orain, ebatzi m=\frac{9±15}{2} ekuazioa ± plus denean. Gehitu 9 eta 15.
m=12
Zatitu 24 balioa 2 balioarekin.
m=-\frac{6}{2}
Orain, ebatzi m=\frac{9±15}{2} ekuazioa ± minus denean. Egin 15 ken 9.
m=-3
Zatitu -6 balioa 2 balioarekin.
m^{2}-9m-36=\left(m-12\right)\left(m-\left(-3\right)\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 12 x_{1} faktorean, eta -3 x_{2} faktorean.
m^{2}-9m-36=\left(m-12\right)\left(m+3\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.