Ebatzi: f
f=\frac{14m+15}{m^{2}}
m\neq 0
Ebatzi: m (complex solution)
\left\{\begin{matrix}m=\frac{\sqrt{15f+49}+7}{f}\text{; }m=\frac{-\sqrt{15f+49}+7}{f}\text{, }&f\neq 0\\m=-\frac{15}{14}\text{, }&f=0\end{matrix}\right.
Ebatzi: m
\left\{\begin{matrix}m=\frac{\sqrt{15f+49}+7}{f}\text{; }m=\frac{-\sqrt{15f+49}+7}{f}\text{, }&f\neq 0\text{ and }f\geq -\frac{49}{15}\\m=-\frac{15}{14}\text{, }&f=0\end{matrix}\right.
Partekatu
Kopiatu portapapeletan
fm^{2}-15=14m
Gehitu 14m bi aldeetan. Edozein zenbaki gehi zero zenbaki hori bera da.
fm^{2}=14m+15
Gehitu 15 bi aldeetan.
m^{2}f=14m+15
Modu arruntean dago ekuazioa.
\frac{m^{2}f}{m^{2}}=\frac{14m+15}{m^{2}}
Zatitu ekuazioaren bi aldeak m^{2} balioarekin.
f=\frac{14m+15}{m^{2}}
m^{2} balioarekin zatituz gero, m^{2} balioarekiko biderketa desegiten da.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}