Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

-x^{2}+2x+3
Berrantolatu polinomioa, ohiko eran jartzeko. Ordenatu gaiak berretura handienetik txikienera.
a+b=2 ab=-3=-3
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena -x^{2}+ax+bx+3 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
a=3 b=-1
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b positiboa denez, zenbaki positiboak negatiboak baino balio absolutu handiagoa du. Halako pare bakarra sistemaren soluzioa da.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Berridatzi -x^{2}+2x+3 honela: \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Deskonposatu -x lehen taldean, eta -1 bigarren taldean.
\left(x-3\right)\left(-x-1\right)
Deskonposatu x-3 gai arrunta banaketa-propietatea erabiliz.
-x^{2}+2x+3=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Egin 2 ber bi.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Egin -4 bider -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Egin 4 bider 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Gehitu 4 eta 12.
x=\frac{-2±4}{2\left(-1\right)}
Atera 16 balioaren erro karratua.
x=\frac{-2±4}{-2}
Egin 2 bider -1.
x=\frac{2}{-2}
Orain, ebatzi x=\frac{-2±4}{-2} ekuazioa ± plus denean. Gehitu -2 eta 4.
x=-1
Zatitu 2 balioa -2 balioarekin.
x=-\frac{6}{-2}
Orain, ebatzi x=\frac{-2±4}{-2} ekuazioa ± minus denean. Egin 4 ken -2.
x=3
Zatitu -6 balioa -2 balioarekin.
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu -1 x_{1} faktorean, eta 3 x_{2} faktorean.
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.