Faktorizatu
-2x\left(x-3\right)\left(x+2\right)
Ebaluatu
-2x\left(x-3\right)\left(x+2\right)
Grafikoa
Partekatu
Kopiatu portapapeletan
2\left(-x^{3}+x^{2}+6x\right)
Deskonposatu 2.
x\left(-x^{2}+x+6\right)
Kasurako: -x^{3}+x^{2}+6x. Deskonposatu x.
a+b=1 ab=-6=-6
Kasurako: -x^{2}+x+6. Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena -x^{2}+ax+bx+6 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,6 -2,3
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b positiboa denez, zenbaki positiboak negatiboak baino balio absolutu handiagoa du. Zerrendatu -6 biderkadura duten osokoen pare guztiak.
-1+6=5 -2+3=1
Kalkulatu pare bakoitzaren batura.
a=3 b=-2
1 batura duen parea da soluzioa.
\left(-x^{2}+3x\right)+\left(-2x+6\right)
Berridatzi -x^{2}+x+6 honela: \left(-x^{2}+3x\right)+\left(-2x+6\right).
-x\left(x-3\right)-2\left(x-3\right)
Deskonposatu -x lehen taldean, eta -2 bigarren taldean.
\left(x-3\right)\left(-x-2\right)
Deskonposatu x-3 gai arrunta banaketa-propietatea erabiliz.
2x\left(x-3\right)\left(-x-2\right)
Berridatzi faktorizatutako adierazpen osoa.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}