Eduki nagusira salto egin
Diferentziatu x balioarekiko
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{\left(2x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2})-\left(-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+1)\right)}{\left(2x^{2}+1\right)^{2}}
Bi funtzio diferentziagarri ditugunean, bi funtzioen zatiduraren deribatua da izendatzailea bider zenbakitzailearen deribatua ken zenbakitzailea bider izendatzailearen deribatua, dena izendatzailearen karratuarekin zatituta.
\frac{\left(2x^{2}+1\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}\times 2\times 2x^{2-1}\right)}{\left(2x^{2}+1\right)^{2}}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
\frac{\left(2x^{2}+1\right)\left(-2\right)x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
Egin ariketa aritmetikoa.
\frac{2x^{2}\left(-2\right)x^{1}-2x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
Garatu banaketa-propietatearen bidez.
\frac{2\left(-2\right)x^{2+1}-2x^{1}-\left(-4x^{2+1}\right)}{\left(2x^{2}+1\right)^{2}}
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak.
\frac{-4x^{3}-2x^{1}-\left(-4x^{3}\right)}{\left(2x^{2}+1\right)^{2}}
Egin ariketa aritmetikoa.
\frac{\left(-4-\left(-4\right)\right)x^{3}-2x^{1}}{\left(2x^{2}+1\right)^{2}}
Bateratu antzeko gaiak.
\frac{-2x^{1}}{\left(2x^{2}+1\right)^{2}}
Egin -4 ken -4.
\frac{-2x}{\left(2x^{2}+1\right)^{2}}
t gaiei dagokienez, t^{1}=t.