d y = - 0.25 x ^ { 2 } + 4 x - 17
Ebatzi: d (complex solution)
\left\{\begin{matrix}d=-\frac{x^{2}-16x+68}{4y}\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&\left(x=8-2i\text{ or }x=8+2i\right)\text{ and }y=0\end{matrix}\right.
Ebatzi: d
d=-\frac{x^{2}-16x+68}{4y}
y\neq 0
Ebatzi: x (complex solution)
x=-2\sqrt{-dy-1}+8
x=2\left(\sqrt{-dy-1}+4\right)
Ebatzi: x
x=-2\sqrt{-dy-1}+8
x=2\sqrt{-dy-1}+8\text{, }\left(y>0\text{ or }d\geq -\frac{1}{y}\right)\text{ and }\left(y<0\text{ or }d\leq -\frac{1}{y}\right)\text{ and }y\neq 0
Grafikoa
Partekatu
Kopiatu portapapeletan
yd=-\frac{x^{2}}{4}+4x-17
Modu arruntean dago ekuazioa.
\frac{yd}{y}=\frac{-\frac{x^{2}}{4}+4x-17}{y}
Zatitu ekuazioaren bi aldeak y balioarekin.
d=\frac{-\frac{x^{2}}{4}+4x-17}{y}
y balioarekin zatituz gero, y balioarekiko biderketa desegiten da.
d=\frac{-x^{2}+16x-68}{4y}
Zatitu -\frac{x^{2}}{4}+4x-17 balioa y balioarekin.
yd=-\frac{x^{2}}{4}+4x-17
Modu arruntean dago ekuazioa.
\frac{yd}{y}=\frac{-\frac{x^{2}}{4}+4x-17}{y}
Zatitu ekuazioaren bi aldeak y balioarekin.
d=\frac{-\frac{x^{2}}{4}+4x-17}{y}
y balioarekin zatituz gero, y balioarekiko biderketa desegiten da.
d=\frac{-x^{2}+16x-68}{4y}
Zatitu -\frac{x^{2}}{4}+4x-17 balioa y balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}