d x + b = 7 ( x - d )
Ebatzi: d (complex solution)
\left\{\begin{matrix}d=-\frac{b-7x}{x+7}\text{, }&x\neq -7\\d\in \mathrm{C}\text{, }&x=-7\text{ and }b=-49\end{matrix}\right.
Ebatzi: b
b=-\left(dx-7x+7d\right)
Ebatzi: d
\left\{\begin{matrix}d=-\frac{b-7x}{x+7}\text{, }&x\neq -7\\d\in \mathrm{R}\text{, }&x=-7\text{ and }b=-49\end{matrix}\right.
Grafikoa
Partekatu
Kopiatu portapapeletan
dx+b=7x-7d
Erabili banaketa-propietatea 7 eta x-d biderkatzeko.
dx+b+7d=7x
Gehitu 7d bi aldeetan.
dx+7d=7x-b
Kendu b bi aldeetatik.
\left(x+7\right)d=7x-b
Konbinatu d duten gai guztiak.
\frac{\left(x+7\right)d}{x+7}=\frac{7x-b}{x+7}
Zatitu ekuazioaren bi aldeak x+7 balioarekin.
d=\frac{7x-b}{x+7}
x+7 balioarekin zatituz gero, x+7 balioarekiko biderketa desegiten da.
dx+b=7x-7d
Erabili banaketa-propietatea 7 eta x-d biderkatzeko.
b=7x-7d-dx
Kendu dx bi aldeetatik.
dx+b=7x-7d
Erabili banaketa-propietatea 7 eta x-d biderkatzeko.
dx+b+7d=7x
Gehitu 7d bi aldeetan.
dx+7d=7x-b
Kendu b bi aldeetatik.
\left(x+7\right)d=7x-b
Konbinatu d duten gai guztiak.
\frac{\left(x+7\right)d}{x+7}=\frac{7x-b}{x+7}
Zatitu ekuazioaren bi aldeak x+7 balioarekin.
d=\frac{7x-b}{x+7}
x+7 balioarekin zatituz gero, x+7 balioarekiko biderketa desegiten da.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}