a y ^ { 2 } d y = a y ^ { 3 } + c
Ebatzi: a (complex solution)
\left\{\begin{matrix}a=\frac{c}{\left(d-1\right)y^{3}}\text{, }&y\neq 0\text{ and }d\neq 1\\a\in \mathrm{C}\text{, }&\left(y=0\text{ or }d=1\right)\text{ and }c=0\end{matrix}\right.
Ebatzi: a
\left\{\begin{matrix}a=\frac{c}{\left(d-1\right)y^{3}}\text{, }&y\neq 0\text{ and }d\neq 1\\a\in \mathrm{R}\text{, }&\left(y=0\text{ or }d=1\right)\text{ and }c=0\end{matrix}\right.
Ebatzi: c
c=a\left(d-1\right)y^{3}
Partekatu
Kopiatu portapapeletan
ay^{3}d=ay^{3}+c
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak. 3 lortzeko, gehitu 2 eta 1.
ay^{3}d-ay^{3}=c
Kendu ay^{3} bi aldeetatik.
ady^{3}-ay^{3}=c
Berrantolatu gaiak.
\left(dy^{3}-y^{3}\right)a=c
Konbinatu a duten gai guztiak.
\frac{\left(dy^{3}-y^{3}\right)a}{dy^{3}-y^{3}}=\frac{c}{dy^{3}-y^{3}}
Zatitu ekuazioaren bi aldeak dy^{3}-y^{3} balioarekin.
a=\frac{c}{dy^{3}-y^{3}}
dy^{3}-y^{3} balioarekin zatituz gero, dy^{3}-y^{3} balioarekiko biderketa desegiten da.
a=\frac{c}{\left(d-1\right)y^{3}}
Zatitu c balioa dy^{3}-y^{3} balioarekin.
ay^{3}d=ay^{3}+c
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak. 3 lortzeko, gehitu 2 eta 1.
ay^{3}d-ay^{3}=c
Kendu ay^{3} bi aldeetatik.
ady^{3}-ay^{3}=c
Berrantolatu gaiak.
\left(dy^{3}-y^{3}\right)a=c
Konbinatu a duten gai guztiak.
\frac{\left(dy^{3}-y^{3}\right)a}{dy^{3}-y^{3}}=\frac{c}{dy^{3}-y^{3}}
Zatitu ekuazioaren bi aldeak dy^{3}-y^{3} balioarekin.
a=\frac{c}{dy^{3}-y^{3}}
dy^{3}-y^{3} balioarekin zatituz gero, dy^{3}-y^{3} balioarekiko biderketa desegiten da.
a=\frac{c}{\left(d-1\right)y^{3}}
Zatitu c balioa dy^{3}-y^{3} balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}