Ebatzi: a
a=-2^{1-c}
Ebatzi: c
c=\log_{2}\left(-\frac{2}{a}\right)
a<0
Partekatu
Kopiatu portapapeletan
a\times 2^{c}=1-3
Kendu 3 bi aldeetatik.
a\times 2^{c}=-2
-2 lortzeko, 1 balioari kendu 3.
2^{c}a=-2
Modu arruntean dago ekuazioa.
\frac{2^{c}a}{2^{c}}=-\frac{2}{2^{c}}
Zatitu ekuazioaren bi aldeak 2^{c} balioarekin.
a=-\frac{2}{2^{c}}
2^{c} balioarekin zatituz gero, 2^{c} balioarekiko biderketa desegiten da.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}