Ebatzi: p_1
\left\{\begin{matrix}p_{1}=p_{2}-ϕ_{12}+\frac{iV_{12}}{v_{12}}\text{, }&v_{12}\neq 0\\p_{1}\in \mathrm{C}\text{, }&V_{12}=0\text{ and }v_{12}=0\end{matrix}\right.
Ebatzi: V_12
V_{12}=-iv_{12}\left(p_{1}-p_{2}+ϕ_{12}\right)
Partekatu
Kopiatu portapapeletan
V_{12}=-iv_{12}ϕ_{12}-iv_{12}p_{1}+iv_{12}p_{2}
Erabili banaketa-propietatea v_{12}\left(-i\right) eta ϕ_{12}+p_{1}-p_{2} biderkatzeko.
-iv_{12}ϕ_{12}-iv_{12}p_{1}+iv_{12}p_{2}=V_{12}
Trukatu aldeak, aldagaiak ezkerraldean egon daitezen.
-iv_{12}p_{1}+iv_{12}p_{2}=V_{12}-\left(-iv_{12}ϕ_{12}\right)
Kendu -iv_{12}ϕ_{12} bi aldeetatik.
-iv_{12}p_{1}=V_{12}-\left(-iv_{12}ϕ_{12}\right)-iv_{12}p_{2}
Kendu iv_{12}p_{2} bi aldeetatik.
-iv_{12}p_{1}=V_{12}+iv_{12}ϕ_{12}-iv_{12}p_{2}
i lortzeko, biderkatu -1 eta -i.
\left(-iv_{12}\right)p_{1}=V_{12}+iv_{12}ϕ_{12}-ip_{2}v_{12}
Modu arruntean dago ekuazioa.
\frac{\left(-iv_{12}\right)p_{1}}{-iv_{12}}=\frac{V_{12}+iv_{12}ϕ_{12}-ip_{2}v_{12}}{-iv_{12}}
Zatitu ekuazioaren bi aldeak -iv_{12} balioarekin.
p_{1}=\frac{V_{12}+iv_{12}ϕ_{12}-ip_{2}v_{12}}{-iv_{12}}
-iv_{12} balioarekin zatituz gero, -iv_{12} balioarekiko biderketa desegiten da.
p_{1}=p_{2}-ϕ_{12}+\frac{iV_{12}}{v_{12}}
Zatitu V_{12}+iv_{12}ϕ_{12}-iv_{12}p_{2} balioa -iv_{12} balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}