Ebatzi: c
\left\{\begin{matrix}c=\frac{3Q\cot(m)}{mt}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\left(m>\frac{\pi n_{1}}{2}\text{ and }m<\frac{\pi n_{1}}{2}+\frac{\pi }{2}\right)\text{ and }t\neq 0\\c\in \mathrm{R}\text{, }&\left(Q=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }m=\pi n_{2}\right)\text{ or }\left(Q=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }m=\pi n_{1}+\frac{\pi }{2}\text{ and }t=0\right)\end{matrix}\right.
Ebatzi: Q
Q=\frac{cmt\tan(m)}{3}
\nexists n_{1}\in \mathrm{Z}\text{ : }m=\pi n_{1}+\frac{\pi }{2}
Partekatu
Kopiatu portapapeletan
\frac{1}{3}mct\tan(m)=Q
Trukatu aldeak, aldagaiak ezkerraldean egon daitezen.
\frac{mt\tan(m)}{3}c=Q
Modu arruntean dago ekuazioa.
\frac{3\times \frac{mt\tan(m)}{3}c}{mt\tan(m)}=\frac{3Q}{mt\tan(m)}
Zatitu ekuazioaren bi aldeak \frac{1}{3}mt\tan(m) balioarekin.
c=\frac{3Q}{mt\tan(m)}
\frac{1}{3}mt\tan(m) balioarekin zatituz gero, \frac{1}{3}mt\tan(m) balioarekiko biderketa desegiten da.
c=\frac{3Q\cot(m)}{mt}
Zatitu Q balioa \frac{1}{3}mt\tan(m) balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}