Ebatzi: A
\left\{\begin{matrix}A=-\frac{2\left(1-x\right)\left(x-2\right)}{fx^{2}+2С}\text{, }&С\neq -\frac{fx^{2}}{2}\\A\in \mathrm{R}\text{, }&\left(x=2\text{ and }f=-\frac{С}{2}\right)\text{ or }\left(x=1\text{ and }f=-2С_{1}\right)\end{matrix}\right.
Ebatzi: f
\left\{\begin{matrix}f=-\frac{2С}{x^{2}}+\frac{2\left(x^{2}-3x+2\right)}{Ax^{2}}\text{, }&A\neq 0\text{ and }x\neq 0\\f\in \mathrm{R}\text{, }&\left(A=\frac{2}{С}\text{ and }x=0\text{ and }С_{1}\neq 0\right)\text{ or }\left(A=0\text{ and }x=2\right)\text{ or }\left(A=0\text{ and }x=1\right)\end{matrix}\right.
Partekatu
Kopiatu portapapeletan
\left(\frac{fx^{2}}{2}+С\right)A=x^{2}-3x+2
Modu arruntean dago ekuazioa.
\frac{\left(\frac{fx^{2}}{2}+С\right)A}{\frac{fx^{2}}{2}+С}=\frac{\left(x-2\right)\left(x-1\right)}{\frac{fx^{2}}{2}+С}
Zatitu ekuazioaren bi aldeak \frac{1}{2}fx^{2}+С balioarekin.
A=\frac{\left(x-2\right)\left(x-1\right)}{\frac{fx^{2}}{2}+С}
\frac{1}{2}fx^{2}+С balioarekin zatituz gero, \frac{1}{2}fx^{2}+С balioarekiko biderketa desegiten da.
A=\frac{2\left(x-2\right)\left(x-1\right)}{fx^{2}+2С}
Zatitu \left(-2+x\right)\left(-1+x\right) balioa \frac{1}{2}fx^{2}+С balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}