Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

5x-2\left(x-1\right)\left(3-x\right)-11=0
Kendu 11 bi aldeetatik.
5x+\left(-2x+2\right)\left(3-x\right)-11=0
Erabili banaketa-propietatea -2 eta x-1 biderkatzeko.
5x-8x+2x^{2}+6-11=0
Erabili banaketa-propietatea -2x+2 eta 3-x biderkatzeko eta antzeko gaiak bateratzeko.
-3x+2x^{2}+6-11=0
-3x lortzeko, konbinatu 5x eta -8x.
-3x+2x^{2}-5=0
-5 lortzeko, 6 balioari kendu 11.
2x^{2}-3x-5=0
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 2 balioa a balioarekin, -3 balioa b balioarekin, eta -5 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Egin -3 ber bi.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
Egin -4 bider 2.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
Egin -8 bider -5.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
Gehitu 9 eta 40.
x=\frac{-\left(-3\right)±7}{2\times 2}
Atera 49 balioaren erro karratua.
x=\frac{3±7}{2\times 2}
-3 zenbakiaren aurkakoa 3 da.
x=\frac{3±7}{4}
Egin 2 bider 2.
x=\frac{10}{4}
Orain, ebatzi x=\frac{3±7}{4} ekuazioa ± plus denean. Gehitu 3 eta 7.
x=\frac{5}{2}
Murriztu \frac{10}{4} zatikia gai txikienera, 2 bakanduta eta ezeztatuta.
x=-\frac{4}{4}
Orain, ebatzi x=\frac{3±7}{4} ekuazioa ± minus denean. Egin 7 ken 3.
x=-1
Zatitu -4 balioa 4 balioarekin.
x=\frac{5}{2} x=-1
Ebatzi da ekuazioa.
5x-2\left(x-1\right)\left(3-x\right)=11
-2 lortzeko, biderkatu -1 eta 2.
5x+\left(-2x+2\right)\left(3-x\right)=11
Erabili banaketa-propietatea -2 eta x-1 biderkatzeko.
5x-8x+2x^{2}+6=11
Erabili banaketa-propietatea -2x+2 eta 3-x biderkatzeko eta antzeko gaiak bateratzeko.
-3x+2x^{2}+6=11
-3x lortzeko, konbinatu 5x eta -8x.
-3x+2x^{2}=11-6
Kendu 6 bi aldeetatik.
-3x+2x^{2}=5
5 lortzeko, 11 balioari kendu 6.
2x^{2}-3x=5
Honelako ekuazio koadratikoak karratua osatuta ebazten dira. Hori egiteko, ekuazioak x^{2}+bx=c egitura izan behar du.
\frac{2x^{2}-3x}{2}=\frac{5}{2}
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x^{2}-\frac{3}{2}x=\frac{5}{2}
2 balioarekin zatituz gero, 2 balioarekiko biderketa desegiten da.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
Zatitu -\frac{3}{2} (x gaiaren koefizientea) 2 balioarekin, eta -\frac{3}{4} lortuko duzu. Ondoren, gehitu -\frac{3}{4} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Egin -\frac{3}{4} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Gehitu \frac{5}{2} eta \frac{9}{16} izendatzaile komun bat aurkituz eta zenbakitzaileak gehituz. Gero, ahal dela, sinplifikatu frakzioa, ahalik eta gai gutxien izan ditzan.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
Atera x^{2}-\frac{3}{2}x+\frac{9}{16} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Atera ekuazioaren bi aldeen erro karratua.
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
Sinplifikatu.
x=\frac{5}{2} x=-1
Gehitu \frac{3}{4} ekuazioaren bi aldeetan.