Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=-12 ab=5\times 4=20
Ekuazioa ebazteko, faktorizatu ezkerraldea taldekatzearen bidez. Lehenik, 5x^{2}+ax+bx+4 gisa idatzi behar da ezkerraldea. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,-20 -2,-10 -4,-5
ab positiboa denez, a eta b balioek zeinu bera dute. a+b negatiboa denez, a eta b negatiboak dira. Zerrendatu 20 biderkadura duten osokoen pare guztiak.
-1-20=-21 -2-10=-12 -4-5=-9
Kalkulatu pare bakoitzaren batura.
a=-10 b=-2
-12 batura duen parea da soluzioa.
\left(5x^{2}-10x\right)+\left(-2x+4\right)
Berridatzi 5x^{2}-12x+4 honela: \left(5x^{2}-10x\right)+\left(-2x+4\right).
5x\left(x-2\right)-2\left(x-2\right)
Deskonposatu 5x lehen taldean, eta -2 bigarren taldean.
\left(x-2\right)\left(5x-2\right)
Deskonposatu x-2 gai arrunta banaketa-propietatea erabiliz.
x=2 x=\frac{2}{5}
Ekuazioaren soluzioak aurkitzeko, ebatzi x-2=0 eta 5x-2=0.
5x^{2}-12x+4=0
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 4}}{2\times 5}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 5 balioa a balioarekin, -12 balioa b balioarekin, eta 4 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 4}}{2\times 5}
Egin -12 ber bi.
x=\frac{-\left(-12\right)±\sqrt{144-20\times 4}}{2\times 5}
Egin -4 bider 5.
x=\frac{-\left(-12\right)±\sqrt{144-80}}{2\times 5}
Egin -20 bider 4.
x=\frac{-\left(-12\right)±\sqrt{64}}{2\times 5}
Gehitu 144 eta -80.
x=\frac{-\left(-12\right)±8}{2\times 5}
Atera 64 balioaren erro karratua.
x=\frac{12±8}{2\times 5}
-12 zenbakiaren aurkakoa 12 da.
x=\frac{12±8}{10}
Egin 2 bider 5.
x=\frac{20}{10}
Orain, ebatzi x=\frac{12±8}{10} ekuazioa ± plus denean. Gehitu 12 eta 8.
x=2
Zatitu 20 balioa 10 balioarekin.
x=\frac{4}{10}
Orain, ebatzi x=\frac{12±8}{10} ekuazioa ± minus denean. Egin 8 ken 12.
x=\frac{2}{5}
Murriztu \frac{4}{10} zatikia gai txikienera, 2 bakanduta eta ezeztatuta.
x=2 x=\frac{2}{5}
Ebatzi da ekuazioa.
5x^{2}-12x+4=0
Honelako ekuazio koadratikoak karratua osatuta ebazten dira. Hori egiteko, ekuazioak x^{2}+bx=c egitura izan behar du.
5x^{2}-12x+4-4=-4
Egin ken 4 ekuazioaren bi aldeetan.
5x^{2}-12x=-4
4 balioari bere burua kenduz gero, 0 da emaitza.
\frac{5x^{2}-12x}{5}=-\frac{4}{5}
Zatitu ekuazioaren bi aldeak 5 balioarekin.
x^{2}-\frac{12}{5}x=-\frac{4}{5}
5 balioarekin zatituz gero, 5 balioarekiko biderketa desegiten da.
x^{2}-\frac{12}{5}x+\left(-\frac{6}{5}\right)^{2}=-\frac{4}{5}+\left(-\frac{6}{5}\right)^{2}
Zatitu -\frac{12}{5} (x gaiaren koefizientea) 2 balioarekin, eta -\frac{6}{5} lortuko duzu. Ondoren, gehitu -\frac{6}{5} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-\frac{12}{5}x+\frac{36}{25}=-\frac{4}{5}+\frac{36}{25}
Egin -\frac{6}{5} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
x^{2}-\frac{12}{5}x+\frac{36}{25}=\frac{16}{25}
Gehitu -\frac{4}{5} eta \frac{36}{25} izendatzaile komun bat aurkituz eta zenbakitzaileak gehituz. Gero, ahal dela, sinplifikatu frakzioa, ahalik eta gai gutxien izan ditzan.
\left(x-\frac{6}{5}\right)^{2}=\frac{16}{25}
Atera x^{2}-\frac{12}{5}x+\frac{36}{25} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-\frac{6}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
Atera ekuazioaren bi aldeen erro karratua.
x-\frac{6}{5}=\frac{4}{5} x-\frac{6}{5}=-\frac{4}{5}
Sinplifikatu.
x=2 x=\frac{2}{5}
Gehitu \frac{6}{5} ekuazioaren bi aldeetan.