Ebatzi: x
x=-2
x=1
Grafikoa
Partekatu
Kopiatu portapapeletan
4x^{2}+8x-4x=8
Kendu 4x bi aldeetatik.
4x^{2}+4x=8
4x lortzeko, konbinatu 8x eta -4x.
4x^{2}+4x-8=0
Kendu 8 bi aldeetatik.
x^{2}+x-2=0
Zatitu ekuazioaren bi aldeak 4 balioarekin.
a+b=1 ab=1\left(-2\right)=-2
Ekuazioa ebazteko, faktorizatu ezkerraldea taldekatzearen bidez. Lehenik, x^{2}+ax+bx-2 gisa idatzi behar da ezkerraldea. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
a=-1 b=2
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b positiboa denez, zenbaki positiboak negatiboak baino balio absolutu handiagoa du. Halako pare bakarra sistemaren soluzioa da.
\left(x^{2}-x\right)+\left(2x-2\right)
Berridatzi x^{2}+x-2 honela: \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Deskonposatu x lehen taldean, eta 2 bigarren taldean.
\left(x-1\right)\left(x+2\right)
Deskonposatu x-1 gai arrunta banaketa-propietatea erabiliz.
x=1 x=-2
Ekuazioaren soluzioak aurkitzeko, ebatzi x-1=0 eta x+2=0.
4x^{2}+8x-4x=8
Kendu 4x bi aldeetatik.
4x^{2}+4x=8
4x lortzeko, konbinatu 8x eta -4x.
4x^{2}+4x-8=0
Kendu 8 bi aldeetatik.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 4 balioa a balioarekin, 4 balioa b balioarekin, eta -8 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-4±\sqrt{16-4\times 4\left(-8\right)}}{2\times 4}
Egin 4 ber bi.
x=\frac{-4±\sqrt{16-16\left(-8\right)}}{2\times 4}
Egin -4 bider 4.
x=\frac{-4±\sqrt{16+128}}{2\times 4}
Egin -16 bider -8.
x=\frac{-4±\sqrt{144}}{2\times 4}
Gehitu 16 eta 128.
x=\frac{-4±12}{2\times 4}
Atera 144 balioaren erro karratua.
x=\frac{-4±12}{8}
Egin 2 bider 4.
x=\frac{8}{8}
Orain, ebatzi x=\frac{-4±12}{8} ekuazioa ± plus denean. Gehitu -4 eta 12.
x=1
Zatitu 8 balioa 8 balioarekin.
x=-\frac{16}{8}
Orain, ebatzi x=\frac{-4±12}{8} ekuazioa ± minus denean. Egin 12 ken -4.
x=-2
Zatitu -16 balioa 8 balioarekin.
x=1 x=-2
Ebatzi da ekuazioa.
4x^{2}+8x-4x=8
Kendu 4x bi aldeetatik.
4x^{2}+4x=8
4x lortzeko, konbinatu 8x eta -4x.
\frac{4x^{2}+4x}{4}=\frac{8}{4}
Zatitu ekuazioaren bi aldeak 4 balioarekin.
x^{2}+\frac{4}{4}x=\frac{8}{4}
4 balioarekin zatituz gero, 4 balioarekiko biderketa desegiten da.
x^{2}+x=\frac{8}{4}
Zatitu 4 balioa 4 balioarekin.
x^{2}+x=2
Zatitu 8 balioa 4 balioarekin.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Zatitu 1 (x gaiaren koefizientea) 2 balioarekin, eta \frac{1}{2} lortuko duzu. Ondoren, gehitu \frac{1}{2} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Egin \frac{1}{2} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Gehitu 2 eta \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Atera x^{2}+x+\frac{1}{4} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Atera ekuazioaren bi aldeen erro karratua.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Sinplifikatu.
x=1 x=-2
Egin ken \frac{1}{2} ekuazioaren bi aldeetan.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}