Faktorizatu
3\left(x-8\right)\left(x-3\right)
Ebaluatu
3\left(x-8\right)\left(x-3\right)
Grafikoa
Partekatu
Kopiatu portapapeletan
3\left(x^{2}-11x+24\right)
Deskonposatu 3.
a+b=-11 ab=1\times 24=24
Kasurako: x^{2}-11x+24. Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx+24 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,-24 -2,-12 -3,-8 -4,-6
ab positiboa denez, a eta b balioek zeinu bera dute. a+b negatiboa denez, a eta b negatiboak dira. Zerrendatu 24 biderkadura duten osokoen pare guztiak.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Kalkulatu pare bakoitzaren batura.
a=-8 b=-3
-11 batura duen parea da soluzioa.
\left(x^{2}-8x\right)+\left(-3x+24\right)
Berridatzi x^{2}-11x+24 honela: \left(x^{2}-8x\right)+\left(-3x+24\right).
x\left(x-8\right)-3\left(x-8\right)
Deskonposatu x lehen taldean, eta -3 bigarren taldean.
\left(x-8\right)\left(x-3\right)
Deskonposatu x-8 gai arrunta banaketa-propietatea erabiliz.
3\left(x-8\right)\left(x-3\right)
Berridatzi faktorizatutako adierazpen osoa.
3x^{2}-33x+72=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 3\times 72}}{2\times 3}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 3\times 72}}{2\times 3}
Egin -33 ber bi.
x=\frac{-\left(-33\right)±\sqrt{1089-12\times 72}}{2\times 3}
Egin -4 bider 3.
x=\frac{-\left(-33\right)±\sqrt{1089-864}}{2\times 3}
Egin -12 bider 72.
x=\frac{-\left(-33\right)±\sqrt{225}}{2\times 3}
Gehitu 1089 eta -864.
x=\frac{-\left(-33\right)±15}{2\times 3}
Atera 225 balioaren erro karratua.
x=\frac{33±15}{2\times 3}
-33 zenbakiaren aurkakoa 33 da.
x=\frac{33±15}{6}
Egin 2 bider 3.
x=\frac{48}{6}
Orain, ebatzi x=\frac{33±15}{6} ekuazioa ± plus denean. Gehitu 33 eta 15.
x=8
Zatitu 48 balioa 6 balioarekin.
x=\frac{18}{6}
Orain, ebatzi x=\frac{33±15}{6} ekuazioa ± minus denean. Egin 15 ken 33.
x=3
Zatitu 18 balioa 6 balioarekin.
3x^{2}-33x+72=3\left(x-8\right)\left(x-3\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 8 x_{1} faktorean, eta 3 x_{2} faktorean.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}