Ebatzi: x
x=-1
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Grafikoa
Partekatu
Kopiatu portapapeletan
a+b=-3 ab=2\left(-5\right)=-10
Ekuazioa ebazteko, faktorizatu ezkerraldea taldekatzearen bidez. Lehenik, 2x^{2}+ax+bx-5 gisa idatzi behar da ezkerraldea. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
1,-10 2,-5
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b negatiboa denez, zenbaki negatiboak positiboak baino balio absolutu handiagoa du. Zerrendatu -10 biderkadura duten osokoen pare guztiak.
1-10=-9 2-5=-3
Kalkulatu pare bakoitzaren batura.
a=-5 b=2
-3 batura duen parea da soluzioa.
\left(2x^{2}-5x\right)+\left(2x-5\right)
Berridatzi 2x^{2}-3x-5 honela: \left(2x^{2}-5x\right)+\left(2x-5\right).
x\left(2x-5\right)+2x-5
Deskonposatu x 2x^{2}-5x taldean.
\left(2x-5\right)\left(x+1\right)
Deskonposatu 2x-5 gai arrunta banaketa-propietatea erabiliz.
x=\frac{5}{2} x=-1
Ekuazioaren soluzioak aurkitzeko, ebatzi 2x-5=0 eta x+1=0.
2x^{2}-3x-5=0
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 2 balioa a balioarekin, -3 balioa b balioarekin, eta -5 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Egin -3 ber bi.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
Egin -4 bider 2.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
Egin -8 bider -5.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
Gehitu 9 eta 40.
x=\frac{-\left(-3\right)±7}{2\times 2}
Atera 49 balioaren erro karratua.
x=\frac{3±7}{2\times 2}
-3 zenbakiaren aurkakoa 3 da.
x=\frac{3±7}{4}
Egin 2 bider 2.
x=\frac{10}{4}
Orain, ebatzi x=\frac{3±7}{4} ekuazioa ± plus denean. Gehitu 3 eta 7.
x=\frac{5}{2}
Murriztu \frac{10}{4} zatikia gai txikienera, 2 bakanduta eta ezeztatuta.
x=-\frac{4}{4}
Orain, ebatzi x=\frac{3±7}{4} ekuazioa ± minus denean. Egin 7 ken 3.
x=-1
Zatitu -4 balioa 4 balioarekin.
x=\frac{5}{2} x=-1
Ebatzi da ekuazioa.
2x^{2}-3x-5=0
Honelako ekuazio koadratikoak karratua osatuta ebazten dira. Hori egiteko, ekuazioak x^{2}+bx=c egitura izan behar du.
2x^{2}-3x-5-\left(-5\right)=-\left(-5\right)
Gehitu 5 ekuazioaren bi aldeetan.
2x^{2}-3x=-\left(-5\right)
-5 balioari bere burua kenduz gero, 0 da emaitza.
2x^{2}-3x=5
Egin -5 ken 0.
\frac{2x^{2}-3x}{2}=\frac{5}{2}
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x^{2}-\frac{3}{2}x=\frac{5}{2}
2 balioarekin zatituz gero, 2 balioarekiko biderketa desegiten da.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
Zatitu -\frac{3}{2} (x gaiaren koefizientea) 2 balioarekin, eta -\frac{3}{4} lortuko duzu. Ondoren, gehitu -\frac{3}{4} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Egin -\frac{3}{4} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Gehitu \frac{5}{2} eta \frac{9}{16} izendatzaile komun bat aurkituz eta zenbakitzaileak gehituz. Gero, ahal dela, sinplifikatu frakzioa, ahalik eta gai gutxien izan ditzan.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
Atera x^{2}-\frac{3}{2}x+\frac{9}{16} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Atera ekuazioaren bi aldeen erro karratua.
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
Sinplifikatu.
x=\frac{5}{2} x=-1
Gehitu \frac{3}{4} ekuazioaren bi aldeetan.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}