Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

2x^{2}-x=0
Kendu x bi aldeetatik.
x\left(2x-1\right)=0
Deskonposatu x.
x=0 x=\frac{1}{2}
Ekuazioaren soluzioak aurkitzeko, ebatzi x=0 eta 2x-1=0.
2x^{2}-x=0
Kendu x bi aldeetatik.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times 2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 2 balioa a balioarekin, -1 balioa b balioarekin, eta 0 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-1\right)±1}{2\times 2}
Atera 1 balioaren erro karratua.
x=\frac{1±1}{2\times 2}
-1 zenbakiaren aurkakoa 1 da.
x=\frac{1±1}{4}
Egin 2 bider 2.
x=\frac{2}{4}
Orain, ebatzi x=\frac{1±1}{4} ekuazioa ± plus denean. Gehitu 1 eta 1.
x=\frac{1}{2}
Murriztu \frac{2}{4} zatikia gai txikienera, 2 bakanduta eta ezeztatuta.
x=\frac{0}{4}
Orain, ebatzi x=\frac{1±1}{4} ekuazioa ± minus denean. Egin 1 ken 1.
x=0
Zatitu 0 balioa 4 balioarekin.
x=\frac{1}{2} x=0
Ebatzi da ekuazioa.
2x^{2}-x=0
Kendu x bi aldeetatik.
\frac{2x^{2}-x}{2}=\frac{0}{2}
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x^{2}-\frac{1}{2}x=\frac{0}{2}
2 balioarekin zatituz gero, 2 balioarekiko biderketa desegiten da.
x^{2}-\frac{1}{2}x=0
Zatitu 0 balioa 2 balioarekin.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
Zatitu -\frac{1}{2} (x gaiaren koefizientea) 2 balioarekin, eta -\frac{1}{4} lortuko duzu. Ondoren, gehitu -\frac{1}{4} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Egin -\frac{1}{4} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
Atera x^{2}-\frac{1}{2}x+\frac{1}{16} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Atera ekuazioaren bi aldeen erro karratua.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
Sinplifikatu.
x=\frac{1}{2} x=0
Gehitu \frac{1}{4} ekuazioaren bi aldeetan.