Ebaluatu
faltsua
Partekatu
Kopiatu portapapeletan
19\leq 0x+0x+0\left(60-x-y\right)\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
0 lortzeko, biderkatu 0 eta 3. 0 lortzeko, biderkatu 0 eta 5. 0 lortzeko, biderkatu 0 eta 2.
19\leq 0+0x+0\left(60-x-y\right)\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Edozein zenbaki bider zero zero da.
19\leq 0+0+0\left(60-x-y\right)\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Edozein zenbaki bider zero zero da.
19\leq 0\left(60-x-y\right)\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
0 lortzeko, gehitu 0 eta 0.
19\leq 0\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Edozein zenbaki bider zero zero da.
\text{false}\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Konparatu19 eta 0.
\text{false}\text{ and }0x+0x+0\left(60-x-y\right)\leq 20
0 lortzeko, biderkatu 0 eta 3. 0 lortzeko, biderkatu 0 eta 5. 0 lortzeko, biderkatu 0 eta 2.
\text{false}\text{ and }0+0x+0\left(60-x-y\right)\leq 20
Edozein zenbaki bider zero zero da.
\text{false}\text{ and }0+0+0\left(60-x-y\right)\leq 20
Edozein zenbaki bider zero zero da.
\text{false}\text{ and }0\left(60-x-y\right)\leq 20
0 lortzeko, gehitu 0 eta 0.
\text{false}\text{ and }0\leq 20
Edozein zenbaki bider zero zero da.
\text{false}\text{ and }\text{true}
Konparatu0 eta 20.
\text{false}
\text{false} eta \text{true} bateratuta \text{false} lortzen da.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}