Ebatzi: x
x = \frac{\sqrt{39}}{6} \approx 1.040833
x = -\frac{\sqrt{39}}{6} \approx -1.040833
Grafikoa
Partekatu
Kopiatu portapapeletan
12x^{2}=23-10
Kendu 10 bi aldeetatik.
12x^{2}=13
13 lortzeko, 23 balioari kendu 10.
x^{2}=\frac{13}{12}
Zatitu ekuazioaren bi aldeak 12 balioarekin.
x=\frac{\sqrt{39}}{6} x=-\frac{\sqrt{39}}{6}
Atera ekuazioaren bi aldeen erro karratua.
12x^{2}+10-23=0
Kendu 23 bi aldeetatik.
12x^{2}-13=0
-13 lortzeko, 10 balioari kendu 23.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-13\right)}}{2\times 12}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 12 balioa a balioarekin, 0 balioa b balioarekin, eta -13 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{0±\sqrt{-4\times 12\left(-13\right)}}{2\times 12}
Egin 0 ber bi.
x=\frac{0±\sqrt{-48\left(-13\right)}}{2\times 12}
Egin -4 bider 12.
x=\frac{0±\sqrt{624}}{2\times 12}
Egin -48 bider -13.
x=\frac{0±4\sqrt{39}}{2\times 12}
Atera 624 balioaren erro karratua.
x=\frac{0±4\sqrt{39}}{24}
Egin 2 bider 12.
x=\frac{\sqrt{39}}{6}
Orain, ebatzi x=\frac{0±4\sqrt{39}}{24} ekuazioa ± plus denean.
x=-\frac{\sqrt{39}}{6}
Orain, ebatzi x=\frac{0±4\sqrt{39}}{24} ekuazioa ± minus denean.
x=\frac{\sqrt{39}}{6} x=-\frac{\sqrt{39}}{6}
Ebatzi da ekuazioa.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}