Ebatzi: a
a=\frac{r}{10d}
d\neq 0
Ebatzi: d
\left\{\begin{matrix}d=\frac{r}{10a}\text{, }&r\neq 0\text{ and }a\neq 0\\d\neq 0\text{, }&a=0\text{ and }r=0\end{matrix}\right.
Partekatu
Kopiatu portapapeletan
10ad=r
Biderkatu ekuazioaren bi aldeak honekin: d.
10da=r
Modu arruntean dago ekuazioa.
\frac{10da}{10d}=\frac{r}{10d}
Zatitu ekuazioaren bi aldeak 10d balioarekin.
a=\frac{r}{10d}
10d balioarekin zatituz gero, 10d balioarekiko biderketa desegiten da.
10ad=r
d aldagaia eta 0 ezin dira izan berdinak, zerorekin zatitzea ez dagoelako definituta. Biderkatu ekuazioaren bi aldeak honekin: d.
\frac{10ad}{10a}=\frac{r}{10a}
Zatitu ekuazioaren bi aldeak 10a balioarekin.
d=\frac{r}{10a}
10a balioarekin zatituz gero, 10a balioarekiko biderketa desegiten da.
d=\frac{r}{10a}\text{, }d\neq 0
d aldagaia eta 0 ezin dira izan berdinak.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}