Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=-12 ab=1\times 32=32
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx+32 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,-32 -2,-16 -4,-8
ab positiboa denez, a eta b balioek zeinu bera dute. a+b negatiboa denez, a eta b negatiboak dira. Zerrendatu 32 biderkadura duten osokoen pare guztiak.
-1-32=-33 -2-16=-18 -4-8=-12
Kalkulatu pare bakoitzaren batura.
a=-8 b=-4
-12 batura duen parea da soluzioa.
\left(x^{2}-8x\right)+\left(-4x+32\right)
Berridatzi x^{2}-12x+32 honela: \left(x^{2}-8x\right)+\left(-4x+32\right).
x\left(x-8\right)-4\left(x-8\right)
Deskonposatu x lehen taldean, eta -4 bigarren taldean.
\left(x-8\right)\left(x-4\right)
Deskonposatu x-8 gai arrunta banaketa-propietatea erabiliz.
x^{2}-12x+32=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
Egin -12 ber bi.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
Egin -4 bider 32.
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
Gehitu 144 eta -128.
x=\frac{-\left(-12\right)±4}{2}
Atera 16 balioaren erro karratua.
x=\frac{12±4}{2}
-12 zenbakiaren aurkakoa 12 da.
x=\frac{16}{2}
Orain, ebatzi x=\frac{12±4}{2} ekuazioa ± plus denean. Gehitu 12 eta 4.
x=8
Zatitu 16 balioa 2 balioarekin.
x=\frac{8}{2}
Orain, ebatzi x=\frac{12±4}{2} ekuazioa ± minus denean. Egin 4 ken 12.
x=4
Zatitu 8 balioa 2 balioarekin.
x^{2}-12x+32=\left(x-8\right)\left(x-4\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 8 x_{1} faktorean, eta 4 x_{2} faktorean.