Ebaluatu
-\left(x-2\right)\left(5x+1\right)
Zabaldu
2+9x-5x^{2}
Grafikoa
Partekatu
Kopiatu portapapeletan
\left(-5x+10\right)\left(x+\frac{1}{5}\right)
Erabili banaketa-propietatea -5 eta x-2 biderkatzeko.
-5x^{2}-5x\times \frac{1}{5}+10x+10\times \frac{1}{5}
Aplikatu banaketa-propietatea, -5x+10 funtzioaren gaiak x+\frac{1}{5} funtzioaren gaiekin biderkatuz.
-5x^{2}-x+10x+10\times \frac{1}{5}
Egin -5 bider \frac{1}{5}.
-5x^{2}+9x+10\times \frac{1}{5}
9x lortzeko, konbinatu -x eta 10x.
-5x^{2}+9x+\frac{10}{5}
\frac{10}{5} lortzeko, biderkatu 10 eta \frac{1}{5}.
-5x^{2}+9x+2
2 lortzeko, zatitu 10 5 balioarekin.
\left(-5x+10\right)\left(x+\frac{1}{5}\right)
Erabili banaketa-propietatea -5 eta x-2 biderkatzeko.
-5x^{2}-5x\times \frac{1}{5}+10x+10\times \frac{1}{5}
Aplikatu banaketa-propietatea, -5x+10 funtzioaren gaiak x+\frac{1}{5} funtzioaren gaiekin biderkatuz.
-5x^{2}-x+10x+10\times \frac{1}{5}
Egin -5 bider \frac{1}{5}.
-5x^{2}+9x+10\times \frac{1}{5}
9x lortzeko, konbinatu -x eta 10x.
-5x^{2}+9x+\frac{10}{5}
\frac{10}{5} lortzeko, biderkatu 10 eta \frac{1}{5}.
-5x^{2}+9x+2
2 lortzeko, zatitu 10 5 balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}