Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

x^{2}-5x+6=2
Erabili banaketa-propietatea x-3 eta x-2 biderkatzeko eta antzeko gaiak bateratzeko.
x^{2}-5x+6-2=0
Kendu 2 bi aldeetatik.
x^{2}-5x+4=0
4 lortzeko, 6 balioari kendu 2.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 1 balioa a balioarekin, -5 balioa b balioarekin, eta 4 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Egin -5 ber bi.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Egin -4 bider 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Gehitu 25 eta -16.
x=\frac{-\left(-5\right)±3}{2}
Atera 9 balioaren erro karratua.
x=\frac{5±3}{2}
-5 zenbakiaren aurkakoa 5 da.
x=\frac{8}{2}
Orain, ebatzi x=\frac{5±3}{2} ekuazioa ± plus denean. Gehitu 5 eta 3.
x=4
Zatitu 8 balioa 2 balioarekin.
x=\frac{2}{2}
Orain, ebatzi x=\frac{5±3}{2} ekuazioa ± minus denean. Egin 3 ken 5.
x=1
Zatitu 2 balioa 2 balioarekin.
x=4 x=1
Ebatzi da ekuazioa.
x^{2}-5x+6=2
Erabili banaketa-propietatea x-3 eta x-2 biderkatzeko eta antzeko gaiak bateratzeko.
x^{2}-5x=2-6
Kendu 6 bi aldeetatik.
x^{2}-5x=-4
-4 lortzeko, 2 balioari kendu 6.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Zatitu -5 (x gaiaren koefizientea) 2 balioarekin, eta -\frac{5}{2} lortuko duzu. Ondoren, gehitu -\frac{5}{2} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
Egin -\frac{5}{2} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Gehitu -4 eta \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Atera x^{2}-5x+\frac{25}{4} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Atera ekuazioaren bi aldeen erro karratua.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Sinplifikatu.
x=4 x=1
Gehitu \frac{5}{2} ekuazioaren bi aldeetan.