Ebaluatu
6u^{2}-3u+7
Diferentziatu u balioarekiko
12u-3
Azterketa
Polynomial
antzeko 5 arazoen antzekoak:
( 7 u ^ { 2 } - 5 u + 3 ) + ( - u ^ { 2 } + 2 u + 4 )
Partekatu
Kopiatu portapapeletan
7u^{2}-3u+3-u^{2}+4
-3u lortzeko, konbinatu -5u eta 2u.
7u^{2}-3u+7-u^{2}
7 lortzeko, gehitu 3 eta 4.
6u^{2}-3u+7
6u^{2} lortzeko, konbinatu 7u^{2} eta -u^{2}.
\frac{\mathrm{d}}{\mathrm{d}u}(7u^{2}-3u+3-u^{2}+4)
-3u lortzeko, konbinatu -5u eta 2u.
\frac{\mathrm{d}}{\mathrm{d}u}(7u^{2}-3u+7-u^{2})
7 lortzeko, gehitu 3 eta 4.
\frac{\mathrm{d}}{\mathrm{d}u}(6u^{2}-3u+7)
6u^{2} lortzeko, konbinatu 7u^{2} eta -u^{2}.
2\times 6u^{2-1}-3u^{1-1}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
12u^{2-1}-3u^{1-1}
Egin 2 bider 6.
12u^{1}-3u^{1-1}
Egin 1 ken 2.
12u^{1}-3u^{0}
Egin 1 ken 1.
12u-3u^{0}
t gaiei dagokienez, t^{1}=t.
12u-3
t gaiei dagokienez, t^{0}=1. Salbuespena: 0.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}