Ebaluatu
62\sqrt{6}+146\approx 297.868364053
Faktorizatu
2 {(31 \sqrt{6} + 73)} = 297.868364053
Partekatu
Kopiatu portapapeletan
30\left(\sqrt{3}\right)^{2}+20\sqrt{3}\sqrt{2}+42\sqrt{3}\sqrt{2}+28\left(\sqrt{2}\right)^{2}
Aplikatu banaketa-propietatea, 5\sqrt{3}+7\sqrt{2} funtzioaren gaiak 6\sqrt{3}+4\sqrt{2} funtzioaren gaiekin biderkatuz.
30\times 3+20\sqrt{3}\sqrt{2}+42\sqrt{3}\sqrt{2}+28\left(\sqrt{2}\right)^{2}
\sqrt{3} zenbakiaren karratua 3 da.
90+20\sqrt{3}\sqrt{2}+42\sqrt{3}\sqrt{2}+28\left(\sqrt{2}\right)^{2}
90 lortzeko, biderkatu 30 eta 3.
90+20\sqrt{6}+42\sqrt{3}\sqrt{2}+28\left(\sqrt{2}\right)^{2}
\sqrt{3} eta \sqrt{2} biderkatzeko, biderkatu erro karratuaren azpiko zenbakiak.
90+20\sqrt{6}+42\sqrt{6}+28\left(\sqrt{2}\right)^{2}
\sqrt{3} eta \sqrt{2} biderkatzeko, biderkatu erro karratuaren azpiko zenbakiak.
90+62\sqrt{6}+28\left(\sqrt{2}\right)^{2}
62\sqrt{6} lortzeko, konbinatu 20\sqrt{6} eta 42\sqrt{6}.
90+62\sqrt{6}+28\times 2
\sqrt{2} zenbakiaren karratua 2 da.
90+62\sqrt{6}+56
56 lortzeko, biderkatu 28 eta 2.
146+62\sqrt{6}
146 lortzeko, gehitu 90 eta 56.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}