Ebaluatu
-\sqrt{3}-4\sqrt{2}\approx -7.388905057
Partekatu
Kopiatu portapapeletan
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
\left(2\sqrt{2}-1\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
\sqrt{2} zenbakiaren karratua 2 da.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
8 lortzeko, biderkatu 4 eta 2.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
9 lortzeko, gehitu 8 eta 1.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
12=2^{2}\times 3 faktorea. Berridatzi biderketaren erro karratua (\sqrt{2^{2}\times 3}) \sqrt{2^{2}}\sqrt{3} erro karratuen biderkadura gisa. Atera 2^{2} balioaren erro karratua.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Adierazi \frac{2\sqrt{3}-3}{\sqrt{3}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider \sqrt{3}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
\sqrt{3} zenbakiaren karratua 3 da.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. Egin 9-4\sqrt{2} bider \frac{3}{3}.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
\frac{3\left(9-4\sqrt{2}\right)}{3} eta \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} balioek izendatzaile bera dutenez, zenbakitzaileak batu behar dituzu zatikien batura kalkulatzeko.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Egin biderketak 3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3} zatikian.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Egin kalkuluak hemen: 27-12\sqrt{2}+6-3\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Zatitu 33-12\sqrt{2}-3\sqrt{3} ekuazioko gai bakoitza 3 balioarekin, 11-4\sqrt{2}-\sqrt{3} lortzeko.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
Erabili banaketa-propietatea 2\sqrt{3}-1 eta -2\sqrt{3}-1 biderkatzeko eta antzeko gaiak bateratzeko.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
\sqrt{3} zenbakiaren karratua 3 da.
11-4\sqrt{2}-\sqrt{3}-12+1
-12 lortzeko, biderkatu -4 eta 3.
11-4\sqrt{2}-\sqrt{3}-11
-11 lortzeko, gehitu -12 eta 1.
-4\sqrt{2}-\sqrt{3}
0 lortzeko, 11 balioari kendu 11.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}