Diferentziatu x balioarekiko
27x^{2}+6x+5y^{2}
Ebaluatu
9x^{3}+3x^{2}+5xy^{2}-8
Partekatu
Kopiatu portapapeletan
\frac{\mathrm{d}}{\mathrm{d}x}(-8+3x^{2}+4xy^{2}+9x^{3}+xy^{2})
3x^{2} lortzeko, konbinatu 4x^{2} eta -x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-8+3x^{2}+5xy^{2}+9x^{3})
5xy^{2} lortzeko, konbinatu 4xy^{2} eta xy^{2}.
2\times 3x^{2-1}+5y^{2}x^{1-1}+3\times 9x^{3-1}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
6x^{2-1}+5y^{2}x^{1-1}+3\times 9x^{3-1}
Egin 2 bider 3.
6x^{1}+5y^{2}x^{1-1}+3\times 9x^{3-1}
Egin 1 ken 2.
6x^{1}+5y^{2}x^{0}+3\times 9x^{3-1}
Egin 1 ken 1.
6x^{1}+5y^{2}x^{0}+27x^{3-1}
Egin 1 bider 5y^{2}.
6x^{1}+5y^{2}x^{0}+27x^{2}
Egin 1 ken 3.
6x+5y^{2}x^{0}+27x^{2}
t gaiei dagokienez, t^{1}=t.
6x+5y^{2}\times 1+27x^{2}
t gaiei dagokienez, t^{0}=1. Salbuespena: 0.
6x+5y^{2}+27x^{2}
t gaiei dagokienez, t\times 1=t eta 1t=t.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}