Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Zabaldu
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
\left(\sqrt{10}-\sqrt{2}\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
\sqrt{10} zenbakiaren karratua 10 da.
10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}
10=2\times 5 faktorea. Berridatzi biderketaren erro karratua (\sqrt{2\times 5}) \sqrt{2}\sqrt{5} erro karratuen biderkadura gisa.
10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}
2 lortzeko, biderkatu \sqrt{2} eta \sqrt{2}.
10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}
-4 lortzeko, biderkatu -2 eta 2.
10-4\sqrt{5}+2
\sqrt{2} zenbakiaren karratua 2 da.
12-4\sqrt{5}
12 lortzeko, gehitu 10 eta 2.
\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
\left(\sqrt{10}-\sqrt{2}\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
\sqrt{10} zenbakiaren karratua 10 da.
10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}
10=2\times 5 faktorea. Berridatzi biderketaren erro karratua (\sqrt{2\times 5}) \sqrt{2}\sqrt{5} erro karratuen biderkadura gisa.
10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}
2 lortzeko, biderkatu \sqrt{2} eta \sqrt{2}.
10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}
-4 lortzeko, biderkatu -2 eta 2.
10-4\sqrt{5}+2
\sqrt{2} zenbakiaren karratua 2 da.
12-4\sqrt{5}
12 lortzeko, gehitu 10 eta 2.