Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=-1 ab=1\left(-30\right)=-30
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx-30 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
1,-30 2,-15 3,-10 5,-6
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b negatiboa denez, zenbaki negatiboak positiboak baino balio absolutu handiagoa du. Zerrendatu -30 biderkadura duten osokoen pare guztiak.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Kalkulatu pare bakoitzaren batura.
a=-6 b=5
-1 batura duen parea da soluzioa.
\left(x^{2}-6x\right)+\left(5x-30\right)
Berridatzi x^{2}-x-30 honela: \left(x^{2}-6x\right)+\left(5x-30\right).
x\left(x-6\right)+5\left(x-6\right)
Deskonposatu x lehen taldean, eta 5 bigarren taldean.
\left(x-6\right)\left(x+5\right)
Deskonposatu x-6 gai arrunta banaketa-propietatea erabiliz.
x^{2}-x-30=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
Egin -4 bider -30.
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
Gehitu 1 eta 120.
x=\frac{-\left(-1\right)±11}{2}
Atera 121 balioaren erro karratua.
x=\frac{1±11}{2}
-1 zenbakiaren aurkakoa 1 da.
x=\frac{12}{2}
Orain, ebatzi x=\frac{1±11}{2} ekuazioa ± plus denean. Gehitu 1 eta 11.
x=6
Zatitu 12 balioa 2 balioarekin.
x=-\frac{10}{2}
Orain, ebatzi x=\frac{1±11}{2} ekuazioa ± minus denean. Egin 11 ken 1.
x=-5
Zatitu -10 balioa 2 balioarekin.
x^{2}-x-30=\left(x-6\right)\left(x-\left(-5\right)\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 6 x_{1} faktorean, eta -5 x_{2} faktorean.
x^{2}-x-30=\left(x-6\right)\left(x+5\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.