Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=-4 ab=1\times 3=3
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx+3 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
a=-3 b=-1
ab positiboa denez, a eta b balioek zeinu bera dute. a+b negatiboa denez, a eta b negatiboak dira. Halako pare bakarra sistemaren soluzioa da.
\left(x^{2}-3x\right)+\left(-x+3\right)
Berridatzi x^{2}-4x+3 honela: \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Deskonposatu x lehen taldean, eta -1 bigarren taldean.
\left(x-3\right)\left(x-1\right)
Deskonposatu x-3 gai arrunta banaketa-propietatea erabiliz.
x^{2}-4x+3=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Egin -4 ber bi.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Egin -4 bider 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
Gehitu 16 eta -12.
x=\frac{-\left(-4\right)±2}{2}
Atera 4 balioaren erro karratua.
x=\frac{4±2}{2}
-4 zenbakiaren aurkakoa 4 da.
x=\frac{6}{2}
Orain, ebatzi x=\frac{4±2}{2} ekuazioa ± plus denean. Gehitu 4 eta 2.
x=3
Zatitu 6 balioa 2 balioarekin.
x=\frac{2}{2}
Orain, ebatzi x=\frac{4±2}{2} ekuazioa ± minus denean. Egin 2 ken 4.
x=1
Zatitu 2 balioa 2 balioarekin.
x^{2}-4x+3=\left(x-3\right)\left(x-1\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 3 x_{1} faktorean, eta 1 x_{2} faktorean.