Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

x^{2}+2x-3+x^{2}>0
Gehitu x^{2} bi aldeetan.
2x^{2}+2x-3>0
2x^{2} lortzeko, konbinatu x^{2} eta x^{2}.
2x^{2}+2x-3=0
Desberdintasuna ebazteko, faktorizatu ezkerraldea. Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-3\right)}}{2\times 2}
ax^{2}+bx+c=0 erako ekuazio guztiak formula koadratiko honen bidez ebatz daitezke: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ordeztu 2 balioa a balioarekin, 2 balioa b balioarekin, eta -3 balioa c balioarekin formula koadratikoan.
x=\frac{-2±2\sqrt{7}}{4}
Egin kalkuluak.
x=\frac{\sqrt{7}-1}{2} x=\frac{-\sqrt{7}-1}{2}
Ebatzi x=\frac{-2±2\sqrt{7}}{4} ekuazioa ± plus denean eta ± minus denean.
2\left(x-\frac{\sqrt{7}-1}{2}\right)\left(x-\frac{-\sqrt{7}-1}{2}\right)>0
Berridatzi desberdintasuna lortutako emaitzen arabera.
x-\frac{\sqrt{7}-1}{2}<0 x-\frac{-\sqrt{7}-1}{2}<0
Biderkadura positiboa izan dadin, x-\frac{\sqrt{7}-1}{2} eta x-\frac{-\sqrt{7}-1}{2} balioak negatiboak edo positiboak izan behar dira. Hartu kasua kontuan x-\frac{\sqrt{7}-1}{2} eta x-\frac{-\sqrt{7}-1}{2} balioak negatiboak direnean.
x<\frac{-\sqrt{7}-1}{2}
Desberdintasun biei egokitzen zaien soluzioa x<\frac{-\sqrt{7}-1}{2} da.
x-\frac{-\sqrt{7}-1}{2}>0 x-\frac{\sqrt{7}-1}{2}>0
Hartu kasua kontuan x-\frac{\sqrt{7}-1}{2} eta x-\frac{-\sqrt{7}-1}{2} balioak positiboak direnean.
x>\frac{\sqrt{7}-1}{2}
Desberdintasun biei egokitzen zaien soluzioa x>\frac{\sqrt{7}-1}{2} da.
x<\frac{-\sqrt{7}-1}{2}\text{; }x>\frac{\sqrt{7}-1}{2}
Lortutako soluzioen batasuna da azken soluzioa.