Ebaluatu
\frac{\sqrt{1808898}}{36400000000000}\approx 3.69492524 \cdot 10^{-11}
Partekatu
Kopiatu portapapeletan
\sqrt{\frac{3\times 6.626\times 10^{-34}}{8\times 9.1\times 10^{-14}\times 2}}
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak. -14 lortzeko, gehitu -28 eta 14.
\sqrt{\frac{3\times 6.626}{2\times 8\times 9.1\times 10^{20}}}
Berrekizun bereko berreturak zatitzeko, kendu zenbakitzailearen berretzailea izendatzailearen berretzaileari.
\sqrt{\frac{19.878}{2\times 8\times 9.1\times 10^{20}}}
19.878 lortzeko, biderkatu 3 eta 6.626.
\sqrt{\frac{19.878}{16\times 9.1\times 10^{20}}}
16 lortzeko, biderkatu 2 eta 8.
\sqrt{\frac{19.878}{145.6\times 10^{20}}}
145.6 lortzeko, biderkatu 16 eta 9.1.
\sqrt{\frac{19.878}{145.6\times 100000000000000000000}}
100000000000000000000 lortzeko, egin 10 ber 20.
\sqrt{\frac{19.878}{14560000000000000000000}}
14560000000000000000000 lortzeko, biderkatu 145.6 eta 100000000000000000000.
\sqrt{\frac{19878}{14560000000000000000000000}}
Hedatu \frac{19.878}{14560000000000000000000} zenbakitzailea eta izendatzailea 1000 balioarekin biderkatuta.
\sqrt{\frac{9939}{7280000000000000000000000}}
Murriztu \frac{19878}{14560000000000000000000000} zatikia gai txikienera, 2 bakanduta eta ezeztatuta.
\frac{\sqrt{9939}}{\sqrt{7280000000000000000000000}}
Berridatzi zatiketaren erro karratua (\sqrt{\frac{9939}{7280000000000000000000000}}) erro karratuen zatiketa gisa (\frac{\sqrt{9939}}{\sqrt{7280000000000000000000000}}).
\frac{\sqrt{9939}}{200000000000\sqrt{182}}
7280000000000000000000000=200000000000^{2}\times 182 faktorea. Berridatzi biderketaren erro karratua (\sqrt{200000000000^{2}\times 182}) \sqrt{200000000000^{2}}\sqrt{182} erro karratuen biderkadura gisa. Atera 200000000000^{2} balioaren erro karratua.
\frac{\sqrt{9939}\sqrt{182}}{200000000000\left(\sqrt{182}\right)^{2}}
Adierazi \frac{\sqrt{9939}}{200000000000\sqrt{182}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider \sqrt{182}.
\frac{\sqrt{9939}\sqrt{182}}{200000000000\times 182}
\sqrt{182} zenbakiaren karratua 182 da.
\frac{\sqrt{1808898}}{200000000000\times 182}
\sqrt{9939} eta \sqrt{182} biderkatzeko, biderkatu erro karratuaren azpiko zenbakiak.
\frac{\sqrt{1808898}}{36400000000000}
36400000000000 lortzeko, biderkatu 200000000000 eta 182.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}