Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

\sqrt{x+12}=3+\sqrt{x-15}
Egin ken -\sqrt{x-15} ekuazioaren bi aldeetan.
\left(\sqrt{x+12}\right)^{2}=\left(3+\sqrt{x-15}\right)^{2}
Egin ekuazioaren bi aldeak ber bi.
x+12=\left(3+\sqrt{x-15}\right)^{2}
x+12 lortzeko, egin \sqrt{x+12} ber 2.
x+12=9+6\sqrt{x-15}+\left(\sqrt{x-15}\right)^{2}
\left(3+\sqrt{x-15}\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x+12=9+6\sqrt{x-15}+x-15
x-15 lortzeko, egin \sqrt{x-15} ber 2.
x+12=-6+6\sqrt{x-15}+x
-6 lortzeko, 9 balioari kendu 15.
x+12-6\sqrt{x-15}=-6+x
Kendu 6\sqrt{x-15} bi aldeetatik.
x+12-6\sqrt{x-15}-x=-6
Kendu x bi aldeetatik.
12-6\sqrt{x-15}=-6
0 lortzeko, konbinatu x eta -x.
-6\sqrt{x-15}=-6-12
Kendu 12 bi aldeetatik.
-6\sqrt{x-15}=-18
-18 lortzeko, -6 balioari kendu 12.
\sqrt{x-15}=\frac{-18}{-6}
Zatitu ekuazioaren bi aldeak -6 balioarekin.
\sqrt{x-15}=3
3 lortzeko, zatitu -18 -6 balioarekin.
x-15=9
Egin ekuazioaren bi aldeak ber bi.
x-15-\left(-15\right)=9-\left(-15\right)
Gehitu 15 ekuazioaren bi aldeetan.
x=9-\left(-15\right)
-15 balioari bere burua kenduz gero, 0 da emaitza.
x=24
Egin -15 ken 9.
\sqrt{24+12}-\sqrt{24-15}=3
Ordeztu 24 balioa x balioarekin \sqrt{x+12}-\sqrt{x-15}=3 ekuazioan.
3=3
Sinplifikatu. x=24 balioak ekuazioa betetzen du.
x=24
\sqrt{x+12}=\sqrt{x-15}+3 ekuazioak soluzio esklusibo bat du.