Ebatzi: h
h=-\frac{27-6^{x}-x^{2}}{x\left(x-7\right)\left(x-1\right)}
x\neq 1\text{ and }x\neq 7\text{ and }x\neq 0
Grafikoa
Partekatu
Kopiatu portapapeletan
hx\left(x-7\right)\left(x-1\right)=x^{2}+6^{x}-27
Biderkatu ekuazioaren bi aldeak honekin: \left(x-7\right)\left(x-1\right).
\left(hx^{2}-7hx\right)\left(x-1\right)=x^{2}+6^{x}-27
Erabili banaketa-propietatea hx eta x-7 biderkatzeko.
hx^{3}-8hx^{2}+7hx=x^{2}+6^{x}-27
Erabili banaketa-propietatea hx^{2}-7hx eta x-1 biderkatzeko eta antzeko gaiak bateratzeko.
\left(x^{3}-8x^{2}+7x\right)h=x^{2}+6^{x}-27
Konbinatu h duten gai guztiak.
\frac{\left(x^{3}-8x^{2}+7x\right)h}{x^{3}-8x^{2}+7x}=\frac{x^{2}+6^{x}-27}{x^{3}-8x^{2}+7x}
Zatitu ekuazioaren bi aldeak -8x^{2}+x^{3}+7x balioarekin.
h=\frac{x^{2}+6^{x}-27}{x^{3}-8x^{2}+7x}
-8x^{2}+x^{3}+7x balioarekin zatituz gero, -8x^{2}+x^{3}+7x balioarekiko biderketa desegiten da.
h=\frac{x^{2}+6^{x}-27}{x\left(x-7\right)\left(x-1\right)}
Zatitu x^{2}+6^{x}-27 balioa -8x^{2}+x^{3}+7x balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}