Eduki nagusira salto egin
Ebatzi: x, y
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

2x+3y=13,3x-2y=0
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
2x+3y=13
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
2x=-3y+13
Egin ken 3y ekuazioaren bi aldeetan.
x=\frac{1}{2}\left(-3y+13\right)
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x=-\frac{3}{2}y+\frac{13}{2}
Egin \frac{1}{2} bider -3y+13.
3\left(-\frac{3}{2}y+\frac{13}{2}\right)-2y=0
Ordeztu \frac{-3y+13}{2} balioa x balioarekin beste ekuazioan (3x-2y=0).
-\frac{9}{2}y+\frac{39}{2}-2y=0
Egin 3 bider \frac{-3y+13}{2}.
-\frac{13}{2}y+\frac{39}{2}=0
Gehitu -\frac{9y}{2} eta -2y.
-\frac{13}{2}y=-\frac{39}{2}
Egin ken \frac{39}{2} ekuazioaren bi aldeetan.
y=3
Zatitu ekuazioaren bi aldeak -\frac{13}{2} balioarekin. Bi aldeak frakzioaren frakzio erreziprokoarekin biderkatzearen berdina da.
x=-\frac{3}{2}\times 3+\frac{13}{2}
Ordeztu 3 y balioarekin x=-\frac{3}{2}y+\frac{13}{2} ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=\frac{-9+13}{2}
Egin -\frac{3}{2} bider 3.
x=2
Gehitu \frac{13}{2} eta -\frac{9}{2} izendatzaile komun bat aurkituz eta zenbakitzaileak gehituz. Gero, ahal dela, sinplifikatu frakzioa, ahalik eta gai gutxien izan ditzan.
x=2,y=3
Ebatzi da sistema.
2x+3y=13,3x-2y=0
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\0\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}13\\0\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}2&3\\3&-2\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}13\\0\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}13\\0\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3\times 3}&-\frac{3}{2\left(-2\right)-3\times 3}\\-\frac{3}{2\left(-2\right)-3\times 3}&\frac{2}{2\left(-2\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}13\\0\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\\frac{3}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}13\\0\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 13\\\frac{3}{13}\times 13\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Egin ariketa aritmetikoa.
x=2,y=3
Atera x eta y matrize-elementuak.
2x+3y=13,3x-2y=0
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
3\times 2x+3\times 3y=3\times 13,2\times 3x+2\left(-2\right)y=0
2x eta 3x berdintzeko, biderkatu 3 balioarekin lehenengo ekuazioaren bi aldeetan dauden gaiak, eta biderkatu 2 balioarekin bigarren ekuazioaren bi aldeetan dauden gaiak.
6x+9y=39,6x-4y=0
Sinplifikatu.
6x-6x+9y+4y=39
Egin 6x-4y=0 ken 6x+9y=39 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
9y+4y=39
Gehitu 6x eta -6x. Sinplifikatu egiten dira 6x eta -6x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
13y=39
Gehitu 9y eta 4y.
y=3
Zatitu ekuazioaren bi aldeak 13 balioarekin.
3x-2\times 3=0
Ordeztu 3 y balioarekin 3x-2y=0 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
3x-6=0
Egin -2 bider 3.
3x=6
Gehitu 6 ekuazioaren bi aldeetan.
x=2
Zatitu ekuazioaren bi aldeak 3 balioarekin.
x=2,y=3
Ebatzi da sistema.