Eduki nagusira salto egin
Ebatzi: x, y
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

x-y=2,2x+y=10
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
x-y=2
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
x=y+2
Gehitu y ekuazioaren bi aldeetan.
2\left(y+2\right)+y=10
Ordeztu y+2 balioa x balioarekin beste ekuazioan (2x+y=10).
2y+4+y=10
Egin 2 bider y+2.
3y+4=10
Gehitu 2y eta y.
3y=6
Egin ken 4 ekuazioaren bi aldeetan.
y=2
Zatitu ekuazioaren bi aldeak 3 balioarekin.
x=2+2
Ordeztu 2 y balioarekin x=y+2 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=4
Gehitu 2 eta 2.
x=4,y=2
Ebatzi da sistema.
x-y=2,2x+y=10
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}1&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\10\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}1&-1\\2&1\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-1}{1-\left(-2\right)}\\-\frac{2}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2+\frac{1}{3}\times 10\\-\frac{2}{3}\times 2+\frac{1}{3}\times 10\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Egin ariketa aritmetikoa.
x=4,y=2
Atera x eta y matrize-elementuak.
x-y=2,2x+y=10
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
2x+2\left(-1\right)y=2\times 2,2x+y=10
x eta 2x berdintzeko, biderkatu 2 balioarekin lehenengo ekuazioaren bi aldeetan dauden gaiak, eta biderkatu 1 balioarekin bigarren ekuazioaren bi aldeetan dauden gaiak.
2x-2y=4,2x+y=10
Sinplifikatu.
2x-2x-2y-y=4-10
Egin 2x+y=10 ken 2x-2y=4 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
-2y-y=4-10
Gehitu 2x eta -2x. Sinplifikatu egiten dira 2x eta -2x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
-3y=4-10
Gehitu -2y eta -y.
-3y=-6
Gehitu 4 eta -10.
y=2
Zatitu ekuazioaren bi aldeak -3 balioarekin.
2x+2=10
Ordeztu 2 y balioarekin 2x+y=10 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
2x=8
Egin ken 2 ekuazioaren bi aldeetan.
x=4
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x=4,y=2
Ebatzi da sistema.