Ebatzi: x, y
x=4
y = \frac{11}{2} = 5\frac{1}{2} = 5.5
Grafikoa
Partekatu
Kopiatu portapapeletan
x+2y=15,x-2y=-7
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
x+2y=15
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
x=-2y+15
Egin ken 2y ekuazioaren bi aldeetan.
-2y+15-2y=-7
Ordeztu -2y+15 balioa x balioarekin beste ekuazioan (x-2y=-7).
-4y+15=-7
Gehitu -2y eta -2y.
-4y=-22
Egin ken 15 ekuazioaren bi aldeetan.
y=\frac{11}{2}
Zatitu ekuazioaren bi aldeak -4 balioarekin.
x=-2\times \frac{11}{2}+15
Ordeztu \frac{11}{2} y balioarekin x=-2y+15 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=-11+15
Egin -2 bider \frac{11}{2}.
x=4
Gehitu 15 eta -11.
x=4,y=\frac{11}{2}
Ebatzi da sistema.
x+2y=15,x-2y=-7
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-7\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}15\\-7\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}1&2\\1&-2\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}15\\-7\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}15\\-7\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{2}{-2-2}\\-\frac{1}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}15\\-7\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}15\\-7\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 15+\frac{1}{2}\left(-7\right)\\\frac{1}{4}\times 15-\frac{1}{4}\left(-7\right)\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\\frac{11}{2}\end{matrix}\right)
Egin ariketa aritmetikoa.
x=4,y=\frac{11}{2}
Atera x eta y matrize-elementuak.
x+2y=15,x-2y=-7
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
x-x+2y+2y=15+7
Egin x-2y=-7 ken x+2y=15 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
2y+2y=15+7
Gehitu x eta -x. Sinplifikatu egiten dira x eta -x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
4y=15+7
Gehitu 2y eta 2y.
4y=22
Gehitu 15 eta 7.
y=\frac{11}{2}
Zatitu ekuazioaren bi aldeak 4 balioarekin.
x-2\times \frac{11}{2}=-7
Ordeztu \frac{11}{2} y balioarekin x-2y=-7 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x-11=-7
Egin -2 bider \frac{11}{2}.
x=4
Gehitu 11 ekuazioaren bi aldeetan.
x=4,y=\frac{11}{2}
Ebatzi da sistema.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}