Eduki nagusira salto egin
Ebatzi: x, y
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

2x+y=6,6x-y=2
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
2x+y=6
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
2x=-y+6
Egin ken y ekuazioaren bi aldeetan.
x=\frac{1}{2}\left(-y+6\right)
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x=-\frac{1}{2}y+3
Egin \frac{1}{2} bider -y+6.
6\left(-\frac{1}{2}y+3\right)-y=2
Ordeztu -\frac{y}{2}+3 balioa x balioarekin beste ekuazioan (6x-y=2).
-3y+18-y=2
Egin 6 bider -\frac{y}{2}+3.
-4y+18=2
Gehitu -3y eta -y.
-4y=-16
Egin ken 18 ekuazioaren bi aldeetan.
y=4
Zatitu ekuazioaren bi aldeak -4 balioarekin.
x=-\frac{1}{2}\times 4+3
Ordeztu 4 y balioarekin x=-\frac{1}{2}y+3 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=-2+3
Egin -\frac{1}{2} bider 4.
x=1
Gehitu 3 eta -2.
x=1,y=4
Ebatzi da sistema.
2x+y=6,6x-y=2
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}2&1\\6&-1\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-6}&-\frac{1}{2\left(-1\right)-6}\\-\frac{6}{2\left(-1\right)-6}&\frac{2}{2\left(-1\right)-6}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 2\\\frac{3}{4}\times 6-\frac{1}{4}\times 2\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Egin ariketa aritmetikoa.
x=1,y=4
Atera x eta y matrize-elementuak.
2x+y=6,6x-y=2
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
6\times 2x+6y=6\times 6,2\times 6x+2\left(-1\right)y=2\times 2
2x eta 6x berdintzeko, biderkatu 6 balioarekin lehenengo ekuazioaren bi aldeetan dauden gaiak, eta biderkatu 2 balioarekin bigarren ekuazioaren bi aldeetan dauden gaiak.
12x+6y=36,12x-2y=4
Sinplifikatu.
12x-12x+6y+2y=36-4
Egin 12x-2y=4 ken 12x+6y=36 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
6y+2y=36-4
Gehitu 12x eta -12x. Sinplifikatu egiten dira 12x eta -12x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
8y=36-4
Gehitu 6y eta 2y.
8y=32
Gehitu 36 eta -4.
y=4
Zatitu ekuazioaren bi aldeak 8 balioarekin.
6x-4=2
Ordeztu 4 y balioarekin 6x-y=2 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
6x=6
Gehitu 4 ekuazioaren bi aldeetan.
x=1
Zatitu ekuazioaren bi aldeak 6 balioarekin.
x=1,y=4
Ebatzi da sistema.