Eduki nagusira salto egin
Ebatzi: x, y
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

2x+3y=5,3x+2y=76
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
2x+3y=5
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
2x=-3y+5
Egin ken 3y ekuazioaren bi aldeetan.
x=\frac{1}{2}\left(-3y+5\right)
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x=-\frac{3}{2}y+\frac{5}{2}
Egin \frac{1}{2} bider -3y+5.
3\left(-\frac{3}{2}y+\frac{5}{2}\right)+2y=76
Ordeztu \frac{-3y+5}{2} balioa x balioarekin beste ekuazioan (3x+2y=76).
-\frac{9}{2}y+\frac{15}{2}+2y=76
Egin 3 bider \frac{-3y+5}{2}.
-\frac{5}{2}y+\frac{15}{2}=76
Gehitu -\frac{9y}{2} eta 2y.
-\frac{5}{2}y=\frac{137}{2}
Egin ken \frac{15}{2} ekuazioaren bi aldeetan.
y=-\frac{137}{5}
Zatitu ekuazioaren bi aldeak -\frac{5}{2} balioarekin. Bi aldeak frakzioaren frakzio erreziprokoarekin biderkatzearen berdina da.
x=-\frac{3}{2}\left(-\frac{137}{5}\right)+\frac{5}{2}
Ordeztu -\frac{137}{5} y balioarekin x=-\frac{3}{2}y+\frac{5}{2} ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=\frac{411}{10}+\frac{5}{2}
Egin -\frac{3}{2} bider -\frac{137}{5}, zenbakitzailea zenbakitzailearekin eta izendatzailea eta izendatzailearekin biderkatuta. Gero, ahal dela, sinplifikatu zatikia, ahalik eta gai gutxien izan ditzan.
x=\frac{218}{5}
Gehitu \frac{5}{2} eta \frac{411}{10} izendatzaile komun bat aurkituz eta zenbakitzaileak gehituz. Gero, ahal dela, sinplifikatu frakzioa, ahalik eta gai gutxien izan ditzan.
x=\frac{218}{5},y=-\frac{137}{5}
Ebatzi da sistema.
2x+3y=5,3x+2y=76
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\76\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\76\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}2&3\\3&2\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\76\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\76\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 3}&-\frac{3}{2\times 2-3\times 3}\\-\frac{3}{2\times 2-3\times 3}&\frac{2}{2\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\76\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\76\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 5+\frac{3}{5}\times 76\\\frac{3}{5}\times 5-\frac{2}{5}\times 76\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{218}{5}\\-\frac{137}{5}\end{matrix}\right)
Egin ariketa aritmetikoa.
x=\frac{218}{5},y=-\frac{137}{5}
Atera x eta y matrize-elementuak.
2x+3y=5,3x+2y=76
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
3\times 2x+3\times 3y=3\times 5,2\times 3x+2\times 2y=2\times 76
2x eta 3x berdintzeko, biderkatu 3 balioarekin lehenengo ekuazioaren bi aldeetan dauden gaiak, eta biderkatu 2 balioarekin bigarren ekuazioaren bi aldeetan dauden gaiak.
6x+9y=15,6x+4y=152
Sinplifikatu.
6x-6x+9y-4y=15-152
Egin 6x+4y=152 ken 6x+9y=15 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
9y-4y=15-152
Gehitu 6x eta -6x. Sinplifikatu egiten dira 6x eta -6x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
5y=15-152
Gehitu 9y eta -4y.
5y=-137
Gehitu 15 eta -152.
y=-\frac{137}{5}
Zatitu ekuazioaren bi aldeak 5 balioarekin.
3x+2\left(-\frac{137}{5}\right)=76
Ordeztu -\frac{137}{5} y balioarekin 3x+2y=76 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
3x-\frac{274}{5}=76
Egin 2 bider -\frac{137}{5}.
3x=\frac{654}{5}
Gehitu \frac{274}{5} ekuazioaren bi aldeetan.
x=\frac{218}{5}
Zatitu ekuazioaren bi aldeak 3 balioarekin.
x=\frac{218}{5},y=-\frac{137}{5}
Ebatzi da sistema.