Eduki nagusira salto egin
Ebatzi: x, y
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

y+2x=7
Probatu bigarren ekuazioa sinplifikatuta. Gehitu 2x bi aldeetan.
x+y=5,2x+y=7
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
x+y=5
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
x=-y+5
Egin ken y ekuazioaren bi aldeetan.
2\left(-y+5\right)+y=7
Ordeztu -y+5 balioa x balioarekin beste ekuazioan (2x+y=7).
-2y+10+y=7
Egin 2 bider -y+5.
-y+10=7
Gehitu -2y eta y.
-y=-3
Egin ken 10 ekuazioaren bi aldeetan.
y=3
Zatitu ekuazioaren bi aldeak -1 balioarekin.
x=-3+5
Ordeztu 3 y balioarekin x=-y+5 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=2
Gehitu 5 eta -3.
x=2,y=3
Ebatzi da sistema.
y+2x=7
Probatu bigarren ekuazioa sinplifikatuta. Gehitu 2x bi aldeetan.
x+y=5,2x+y=7
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}1&1\\2&1\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{1}{1-2}\\-\frac{2}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5+7\\2\times 5-7\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Egin ariketa aritmetikoa.
x=2,y=3
Atera x eta y matrize-elementuak.
y+2x=7
Probatu bigarren ekuazioa sinplifikatuta. Gehitu 2x bi aldeetan.
x+y=5,2x+y=7
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
x-2x+y-y=5-7
Egin 2x+y=7 ken x+y=5 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
x-2x=5-7
Gehitu y eta -y. Sinplifikatu egiten dira y eta -y. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
-x=5-7
Gehitu x eta -2x.
-x=-2
Gehitu 5 eta -7.
x=2
Zatitu ekuazioaren bi aldeak -1 balioarekin.
2\times 2+y=7
Ordeztu 2 x balioarekin 2x+y=7 ekuazioan. Emaitzak aldagai bakarra duenez, y ebatz dezakezu zuzenean.
4+y=7
Egin 2 bider 2.
y=3
Egin ken 4 ekuazioaren bi aldeetan.
x=2,y=3
Ebatzi da sistema.